| 研究生: |
劉美侖 Mei-Lung Liu |
|---|---|
| 論文名稱: |
利用電子光譜研究雙鹵化亞甲基 Experimental study of the ground state vibrational structure fordihalomethylenes by dispersed fluorescence spectroscopy |
| 指導教授: |
張伯琛
Bor-Chen Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 雷射誘導螢光光譜 、基態振動結構 、雙鹵化亞甲基 |
| 外文關鍵詞: | dispersed fluorescence spectroscopy, dihalomethylenes, ground state vibrational structure |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於受到了兩個電子單重態及一個電子三重態的相互作用造成Renner-Teller effect、spin-orbit coupling 與Fermi resonance的干擾,使得鹵化亞甲基之光譜是相當複雜難解的。而大部分的實驗皆著重於此類分子激發態的研究,關於其基態之振動資訊則是相當少量的。為了要了解雙魯化亞甲基之振動結構以解開其複雜的作用力干擾,本實驗以超音速自由噴射裝置搭配高壓直流放電系統,產生雙鹵化亞甲基CCl2 /CBr2,成功的取得CCl2在500 nm至520 nm波長區段之雷射誘導螢光光譜,以及CBr2在546 nm至576 nm波長區段之雷射誘導螢光光譜,並首次得到CCl2與CBr2之螢光分光光譜。藉分析螢光分光光譜,完整解開CCl2 與CBr2電子基態之振動結構。此外,我們也發現CCl2在振動能量為紅位移5000 cm-1以上的區段,存在了一些無法決定之振動結構,若這些譜線為單重態之電子基態與三重態之電子激發態之間相互干擾而造成,便可計算出單重態之電子基態與三重態之電子激發態的能差約為14 kcal /mol,驗證了近年來理論計算之數值。
Laser excited, dispersed fluorescence spectra have been recorded for a number of bands of the A-X electronic transition of CCl2 and CBr2. Analysis of the data yields well defined values for the harmonic and anharmonic constants for the symmetric ground state vibrations. Additional lines in CCl2 spectrum are observed at red shifts > 5000 cm-1 from the origin, which are not assignable in terms of the known X and A state structure. A possible explanation for these transitions would be perturbations of the singlet X structure by the low-lying triplet ã state.
參考文獻
1 A. J. Merer and D. N. Travis, Can. J. Phys. 44, 525 (1966).
2 D. E. Milligan and M. E. Jacox, J. Chem. Phys. 47, 703 (1967).
3 S. Xu, K. Beran, and M. D. Harmony, J. Phys. Chem. 98, 2742 (1994).
4 B.-C. Chang, M. Costen, A. J. Marr, G. Ritchie, G. E. Hall, and T. J. Sears, J. Mol. Spectrosc. 184, 413 (2000) and references therein.
5 A. Lin, K. Kobayashi, H.-G. Yu, G. E. Hall, J. T. Muckerman, T. J. Sears, and A. J. Merer, J. Mol. Spectrosc. 214, 216 (2002) and references therein.
6 L. Andrews, J. Chem. Phys. 48, 979 (1968).
7 J. S. Shirk, J. Chem. Phys. 55, 3608 (1971).
8 D. E. Trevault and L. Andrews, J. Mol. Spectrosc. 54, 110 (1975).
9 A. K. Maltsev, O. M. Neofedov, R. H. Hauge, J. L. Margrave, and D. Seyferth, J. Phys. Chem. 75, 3984 (1971).
10 V. E. Bondybey, J. Mol. Spectrosc. 64, 180 (1977).
11 R. E. Huie, N. J. T. Long, and B. A. Thrush, Chem. Phys. Lett. 51, 197 (1977).
12 M. Fujitake and E. Hirota, J. Chem. Phys. 91, 3426 (1989).
13 D. J. Clouthier and J. Karolczak, J. Chem. Phys. 94, 1 (1991).
4 R. Schlachta, G. Lask, S. H. Tsay, and V. E. Bondybey, Chem. Phys. 155, 267 (1991).
15 K. K. Murray, D. G. Leopold, T. M. Miller and W. C. Lineberger, J. Chem. Phys. 89, 5442 (1988).
16 M. K. Gilles, K. M. Ervin, J. Ho and W. C. Lineberger, J. Phys. Chem. 96, 1130 (1992).
17 R. L. Schwartz, G. E. Davico, T. M. Ramond and W. C. Lineberger, J. Phys. Chem. A 103, 8213 (1999).
18 M. Schwarz and P. Marshall, J. Phys. Chem. A 103, 7900 (1999) and references therein.
19 C. J. Barden and H. F. Schaefer Ⅲ, J. Chem. Phys. 112, 6515 (2000) and references therein.
20 B. Hajgató, H. M. T. Nguyen, T. Veszprémi, and M. T. Nguyen, Phys. Chem. Chem. Phys. 2, 5041 (2000).
21 K. Sendt and G. B. Bacskay, J. Chem. Phys. 112, 2227 (2000).
22 E. P. F. Lee, J. M. Dyke, T. G. Wright, Chem. Phys. Lett. 326, 143 (2000).
23 L. Andrews and T. G. Carver, J. Chem Phys. 49, 896 (1968).
24 D. E. Tevault and L. Andrews, J. Am. Chem. Soc. 97, 1707 (1975).
25 V. E. Bondybey and J. H. English, J. Mol. Spectrosc. 79, 416 (1980).
26 S. K. Zhou, M. S. Zhan, J. L. Shi, and C. X. Wang, Chem. Phys. Lett. 166, 547 (1990).
27 S. Xu and M. D. Harmony, J. Phys. Chem. 97, 7465 (1993).
28 E. A. Carter and W. A. Goddard III, J. Chem. Phys. 88, 1752 (1988).
29 K. K. Irikura, W. A. Goddard III, and J. L. Beauchamp, J. Am. Chem. Soc. 114, 48 (1992).
30 M. Schwartz and P. Marshall, J. Phys. Chem. A 103, 7900 (1999), and references therein.
31 M. L. McKee and J. Michl, J. Phys. Chem. A 106, 8495 (2002).
32 T. A. Miller, Science. 223, 545 (1984).
33 S. Koda, Chem. Phys. Lett. 55, 353 (1978).
34 S. Koda, Chem. Phys. 66, 383 (1982).
35 M. T. Nguyen, M. C. Kerins, A. F. Hegarty, and N. J. Fitzpatrick, Chem. Phys. Lett. 117, 295 (1985).
36 J. Demaison, L. Margulès, J. M. L. Martin, and J. E. Boggs, Phys. Chem. Chem. Phys. 4, 3282 (2002).
37 J. F. Stanton, J. Gauss, J. D. watts, W. J. Lauderdale, and R. J. Barlett, Int. J. Quant. Chem. 26, 879 (1992).
38 INTDER is a general program developed by Wesley D. Allen and co-workers which performs various vibrational analyses and higher-order nonlinear transformations among force field representations.
39 W. D. Allen and A. G. Csaszar, J. Chem. Phys. 98, 2983 (1993).
40 W. D. Allen, A. G. Csaszar, V. Szalay, and I. M. Mills, Mol. Phys. 89, 1213 (1996).
41 D. A. Clabo Jr., W. D. Allen, R. B. Remington, Y. Yamaguchi, and H. F. Schaefer Ⅲ, Chem. Phys. 123, 187 (1988).
42 W. D. Allen, Y. Yamaguchi, A. G. Csaszar, D. A. Clabo Jr., R. B. Remington and H. F. Schaefer Ⅲ, Chem. Phys. 145, 427 (1990).
43 E. P. F. Lee, J. M. Dyke, T. G. Wright, Chem. Phys. Lett. 326, 143 (2000).
44 T.-C. Tsai, C.-W. Chen, and B.-C. Chang, J. Chem. Phys. 115, 766 (2001).
45 M. L. McKee and J. Michl, J. Phys. Chem. A 106, 8495 (2002).
46 L. A. Barrie, J. W. Bottenheim, R. C. Schnell, P. J. Crutzen and R. A. Rasmussen, Nature. 334, 138 (1988).