| 研究生: |
紀卉彥 Hui-yen Chi |
|---|---|
| 論文名稱: |
自組裝嵌段共聚高分子/小分子混成奈米浮閘極記憶體:元件製備及效能評估 Self-Assembly Block Copolymers/Small Molecules Hybrid Nano-Floating Gate Memory: Device Fabrication and Performance Evaluation. |
| 指導教授: |
劉振良
Cheng-liang Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 嵌段高分子 、自組裝 、記憶體 、非揮發性 、浮閘極 |
| 外文關鍵詞: | block copolymers, self-assemble, memory, nonvolatile, floating gate |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用poly(styrene-block-4-vinylpyridine)(PS-b-P4VP)嵌段共聚高分子及ferrocenemethanol(FM)小分子混成材料所形成之自組裝超分子結構製作有機高分子奈米浮閘極電晶體式記憶體元件中之電荷捕捉層,並以pentacene為有機半導體層製作於SiO2/Si基板上。因PS-b-P4VP嵌段共聚高分子以自組裝方式形成不同奈米微結構(如球狀、柱狀、層狀),且FM小分子及嵌段共聚高分子中P4VP鏈段產生氫鍵鍵結,使小分子間彼此不聚集,易分散於特定P4VP高分子鏈段結構內。在此探討調控混成材料之不同薄膜微結構形貌對記憶體元件效能影響。此外並可藉由控制混摻小分子摻入量及嵌段共聚高分子鏈段比例使記憶體元件達最佳化表現。
Organic nano-floating gate memory devices were fabricated using self-assembly supramolecular block copolymer hybrid thin films of poly(styrene-block-4-vinylpyridine) (PS-b-P4VP) and ferrocenemethanol (FM) small molecules as charge trapping layer, and pentacene as organic semiconductor on SiO2/Si substrate. The FM small molecules selectively hydrogen bonded with pyridine moieties of PS-b-P4VP block copolymer can be well dispersed within P4VP microdomain without significant aggregation. The nanoscale thin film morphologies and memory characteristics can be fully optimized and compared depending on the loading ratio of small molecules and the segment ratio of block copolymers.
參考文獻
1. Q.-D. Ling, D.-J. Liaw, C. Zhu, D. S.-H. Chan, E.-T. Kang and K.-G. Neoh, Prog. Polym. Sci., 2008, 33, 917.
2. R. C. G. Naber, K. Asadi, P. W. M. Blom, D. M. de Leeuw and B. de Boer, Adv. Mater., 2010, 22, 933.
3. H. S. Nalwa, Ferroelectric Polymers: Chemistry: Physics, and Applications, CRC Press, 1995.
4. A. Troisi and M. A. Ratner, J. Am. Chem. Soc., 2002, 124, 14528.
5. J. Ouyang, C.-W. Chu, C. R. Szmanda, L. Ma and Y. Yang, Nat. Mater., 2004, 3, 918.
6. Q.-D. Ling, F.-C. Chang, Y. Song, C.-X. Zhu, D.-J. Liaw, D. S.-H. Chan, E.-T. Kang and K.-G. Neoh, J. Am. Chem. Soc., 2006, 128, 8732.
7. X.-D. Zhuang, Y. Chen, G. Liu, P.-P. Li, C.-X. Zhu, E.-T. Kang, K.-G. Noeh, B. Zhang, J.-H. Zhu and Y.-X. Li, Adv. Mater., 2010, 22, 1731.
8. S. J. Liu, Z. H. Lin, Q. Zhao, Y. Ma, H. F. Shi, M. D. Yi, Q. D. Ling, Q. L. Fan, C. X. Zhu and E. T. Kang, Adv. Funct. Mater., 2011, 21, 979.
9. B. Zhang, Y. Chen, G. Liu, L.-Q. Xu, J. Chen, C.-X. Zhu, K.-G. Neoh and E.-T. Kang, J. Polym. Sci., Part A: Polym. Chem., 2012, 50, 378.
10. B. Zhang, Y. Chen, Y. Ren, L.-Q. Xu, G. Liu, E.-T. Kang, C. Wang, C.-X. Zhu and K.-G. Neoh, Chem. Eur. J., 2013, 19, 6265.
11. Q.-D. Ling, D.-J. Liaw, E. Y.-H. Teo, C. Zhu, D. S.-H. Chan, E.-T. Kang and K.-G. Neoh, Polymer, 2007, 48, 5182.
12. Q.-D. Ling, Y. Song, S.-L. Lim, E. Y.-H. Teo, Y.-P. Tan, C. Zhu, D. S. H. Chan, D.-L. Kwong, E.-T. Kang and K.-G. Neoh, Angew. Chem. Int. Ed., 2006, 45, 2947.
13. G. Liu, Q.-D. Ling, E.-T. Kang, K.-G. Neoh, D.-J. Liaw, F.-C. Chang, C.-X. Zhu and D. S.-H. Chan, J. Appl. Phys., 2007, 102.
14. J. Oelerich, D. Huemmer, M. Weseloh and S. Baranovskii, Appl. Phys. Lett., 2010, 97, 143302.
15. X.-D. Zhuang, Y. Chen, B.-X. Li, D.-G. Ma, B. Zhang and Y. Li, Chem. Mater., 2010, 22, 4455.
16. Y. K. Fang, C. L. Liu, C. Li, C. J. Lin, R. Mezzenga and W. C. Chen, Adv. Funct. Mater., 2010, 20, 3012.
17. L. Li, Q.-D. Ling, S.-L. Lim, Y.-P. Tan, C. Zhu, D. S. H. Chan, E.-T. Kang and K.-G. Neoh, Org. Electron., 2007, 8, 401.
18. Y.-L. Liu, Q.-D. Ling, E.-T. Kang, K.-G. Neoh, D.-J. Liaw, K.-L. Wang, W.-T. Liou, C.-X. Zhu and D. S.-H. Chan, J. Appl. Phys., 2009, 105, 044501.
19. T. J. Lee, C.-W. Chang, S. G. Hahm, K. Kim, S. Park, D. M. Kim, J. Kim, W.-S. Kwon, G.-S. Liou and M. Ree, Nanotechnology, 2009, 20, 135204.
20. Y.-C. Chiu, I. Otsuka, S. Halila, R. Borsali and W.-C. Chen, Adv. Funct. Mater., 2014, 24, 4240.
21. C. S. Karthikeyan, H. Wietasch and M. Thelakkat, Adv. Mater., 2007, 19, 1091.
22. M. Sommer, S. M. Lindner and M. Thelakkat, Adv. Funct. Mater., 2007, 17, 1493.
23. C. P. Li, K. H. Wei and J. Y. Huang, Angew. Chem., 2006, 118, 1477.
24. Y.-K. Fang, C.-L. Liu, G.-Y. Yang, P.-C. Chen and W.-C. Chen, Macromolecules, 2011, 44, 2604.
25. J. Ouyang, C.-W. Chu, C. R. Szmanda, L. Ma and Y. Yang, Nat. Mater., 2004, 3, 918.
26. C. W. Chu, J. Ouyang, J. H. Tseng and Y. Yang, Adv. Mater., 2005, 17, 1440.
27. J. Liu, Z. Yin, X. Cao, F. Zhao, A. Lin, L. Xie, Q. Fan, F. Boey, H. Zhang and W. Huang, ACS Nano, 2010, 4, 3987.
28. J.-C. Hsu, C.-L. Liu, W.-C. Chen, K. Sugiyama and A. Hirao, Macromol. Rapid Commun., 2011, 32, 528.
29. G. Liu, Q.-D. Ling, E. Y. H. Teo, C.-X. Zhu, D. S.-H. Chan, K.-G. Neoh and E.-T. Kang, ACS Nano, 2009, 3, 1929.
30. P. Heremans, G. H. Gelinck, R. Müller, K.-J. Baeg, D.-Y. Kim and Y.-Y. Noh, Chem. Mater., 2010, 23, 341.
31. C.-L. Liu and W.-C. Chen, Polym. Chem., 2011, 2, 2169.
32. Y. Guo, G. Yu and Y. Liu, Adv. Mater., 2010, 22, 4427.
33. P.-Z. Jian, Y.-C. Chiu, H.-S. Sun, T.-Y. Chen, W.-C. Chen and S.-H. Tung, ACS Appl. Mater. Interfaces, 2014, 6, 5506.
34. M. Burkhardt, A. Jedaa, M. Novak, A. Ebel, K. Voïtchovsky, F. Stellacci, A. Hirsch and M. Halik, Adv. Mater., 2010, 22, 2525.
35. C.-W. Tseng, D.-C. Huang and Y.-T. Tao, ACS Appl. Mater. Interfaces, 2013, 5, 9528.
36. S.-T. Han, Y. Zhou, Z.-X. Xu, V. A. L. Roy and T. F. Hung, J. Mater. Chem., 2011, 21, 14575.
37. Y. Zhou, S.-T. Han, Z.-X. Xu and V. A. L. Roy, Adv. Mater., 2012, 24, 1247.
38. K.-J. Baeg, Y.-Y. Noh, H. Sirringhaus and D.-Y. Kim, Adv. Funct. Mater., 2010, 20, 224.
39. W. L. Leong, P. S. Lee, A. Lohani, Y. M. Lam, T. Chen, S. Zhang, A. Dodabalapur and S. G. Mhaisalkar, Adv. Mater., 2008, 20, 2325.
40. S.-T. Han, Y. Zhou, Z.-X. Xu, L.-B. Huang, X.-B. Yang and V. A. L. Roy, Adv. Mater., 2012, 24, 3556.
41. R. K. Gupta, G. Ying, M. P. Srinivasan and P. S. Lee, J. Phys. Chem. B, 2012, 116, 9784.
42. Q. Wei, Y. Lin, E. R. Anderson, A. L. Briseno, S. P. Gido and J. J. Watkins, ACS Nano, 2012, 6, 1188.
43. H.-C. Chang, C.-L. Liu and W.-C. Chen, ACS Appl. Mater. Interfaces, 2013, 5, 13180.
44. Y.-C. Chen, C.-Y. Huang, H.-C. Yu and Y.-K. Su, J. Appl. Phys., 2012, 112, 034518.
45. T. T. Dao, T. Matsushima and H. Murata, Org. Electron., 2012, 13, 2709.
46. S. M. Kim, E. B. Song, S. Lee, J. Zhu, D. H. Seo, M. Mecklenburg, S. Seo and K. L. Wang, ACS Nano, 2012, 6, 7879.
47. K.-J. Baeg, D. Khim, D.-Y. Kim, S.-W. Jung, J. B. Koo and Y.-Y. Noh, Jpn. J. Appl. Phys., 2010, 49, 05EB01.
48. J.-C. Chen, C.-L. Liu, Y.-S. Sun, S.-H. Tung and W.-C. Chen, Soft Matter, 2012, 8, 526.
49. S.-T. Han, Y. Zhou, C. Wang, L. He, W. Zhang and V. A. L. Roy, Adv. Mater., 2013, 25, 872.
50. A. Rani, J.-M. Song, M. Jung Lee and J.-S. Lee, Appl. Phys. Lett., 2012, 101.
51. S.-T. Han, Y. Zhou, Q. D. Yang, L. Zhou, L.-B. Huang, Y. Yan, C.-S. Lee and V. A. L. Roy, ACS Nano, 2014, 8, 1923.
52. X. Gao, X.-J. She, C.-H. Liu, Q.-J. Sun, J. Liu and S.-D. Wang, Appl. Phys. Lett., 2013, 102.
53. Y. Park, D. Gupta, C. Lee and Y. Hong, Org. Electron., 2012, 13, 2887.
54. K. Chaewon, S. Ji-Min, L. Jang-Sik and L. Mi Jung, Nanotechnology, 2014, 25, 014016.
55. Y.-H. Chou, Y.-C. Chiu and W.-C. Chen, Chem. Commun., 2014, 50, 3217.
56. Q.-D. Ling, E.-T. Kang, K.-G. Neoh, Y. Chen, X.-D. Zhuang, C. Zhu and D. S. H. Chan, Appl. Phys. Lett., 2008, 92.
57. W. L. Leong, N. Mathews, S. Mhaisalkar, Y. M. Lam, T. P. Chen and P. S. Lee, J. Mater. Chem., 2009, 19, 7354.
58. W. Wu, H. Zhang, Y. Wang, S. Ye, Y. Guo, C. Di, G. Yu, D. Zhu and Y. Liu, Adv. Funct. Mater., 2008, 18, 2593.
59. C.-M. Chen, C.-M. Liu, K.-H. Wei, U. S. Jeng and C.-H. Su, J. Mater. Chem., 2012, 22, 454.
60. K. J. Baeg, Y. Y. Noh, J. Ghim, S. J. Kang, H. Lee and D. Y. Kim, Adv. Mater., 2006, 18, 3179.
61. K.-J. Baeg, Y.-Y. Noh, J. Ghim, B. Lim and D.-Y. Kim, Adv. Funct. Mater., 2008, 18, 3678.
62. Y.-C. Chiu, C.-L. Liu, W.-Y. Lee, Y. Chen, T. Kakuchi and W.-C. Chen, NPG Asia Mater., 2013, 5, e35.
63. C.-M. Chen, C.-M. Liu, M.-C. Tsai, H.-C. Chen and K.-H. Wei, J. Mater. Chem. C, 2013, 1, 2328.
64. Y. Noriyoshi, Jpn. J. Appl. Phys., 1986, 25, 590.
65. H.-C. Kim, S.-M. Park and W. D. Hinsberg, Chem. Rev., 2009, 110, 146.
66. F. S. Bates and G. H. Fredrickson, Phys. Today, 2008, 52, 32.
67. F. S. Bates and G. H. Fredrickson, Annu. Rev. Phys. Chem., 1990, 41, 525.
68. L. Leibler, Macromolecules, 1980, 13, 1602.
69. A. N. Semenov, Macromolecules, 1992, 25, 4967.
70. T. Ohta and K. Kawasaki, Macromolecules, 1986, 19, 2621.
71. R. A. Segalman, Mater. Sci. Eng. R-Rep., 2005, 48, 191.
72. S.-H. Tung and T. Xu, Macromolecules, 2009, 42, 5761.
73. R. Mäki-Ontto, K. de Moel, W. de Odorico, J. Ruokolainen, M. Stamm, G. ten Brinke and O. Ikkala, Adv. Mater., 2001, 13, 117.
74. S.-H. Tung, N. C. Kalarickal, J. W. Mays and T. Xu, Macromolecules, 2008, 41, 6453.
75. C.-H. Lee and S.-H. Tung, Soft Matter, 2011, 7, 5660.
76. J. Ruokolainen, M. Saariaho, O. Ikkala, G. ten Brinke, E. L. Thomas, M. Torkkeli and R. Serimaa, Macromolecules, 1999, 32, 1152.
77. A. Sidorenko, I. Tokarev, S. Minko and M. Stamm, J. Am. Chem. Soc., 2003, 125, 12211.
78. B. K. Kuila and M. Stamm, J. Mater. Chem., 2011, 21, 14127.
79. B. Nandan, M. K. Vyas, M. Böhme and M. Stamm, Macromolecules, 2010, 43, 2463.
80. B. K. Kuila and M. Stamm, Macromol. Symp., 2011, 303, 85.
81. B. K. Kuila, E. B. Gowd and M. Stamm, Macromolecules, 2010, 43, 7713.
82. S. Dailey, M. Halim, E. Rebourt, L. Horsburgh, I. Samuel and A. Monkman, J. Phys.: Condens. Matter, 1998, 10, 5171.