跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉彥劭
Yan-Shao Liou
論文名稱: Online Change Point detection under a Copula-Based Markov Chain Model for Bimodal Time Series
指導教授: 孫立憲
Li-Hsien Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 77
中文關鍵詞: 在線改變點檢測Clayton copula馬可夫模型貝氏推論ICO boom
外文關鍵詞: online change point detection, Clayton copula, Markov model, Bayesian inference, ICO boom
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了貝氏在線變點檢測方法基於Clayton copula 且邊際分布為混合
    常態分布的copula-Markov 模型。在模擬研究中,我們研究了相關時間序列數據
    的結構變化,包括單峰數據和雙峰數據之間的轉換以及雙峰數據內部的結構變
    化,並將其與邊際分布為常態分布的copula-Markov 模型進行比較,模擬的結果
    指出在相關性資料由單峰改變成雙峰時,我們所使用的模型在準確率、平均絕對
    誤差、真陽個數、偽陽個數皆勝過對比模型。我們應用這種方法來檢測加密貨幣
    市場從2017 年到2018 年初的變點,其中包括ICO 繁榮的開始和結束,我們選用
    BTC、ETH、NEO 的每日報酬率進行偵測。結果顯示了我們的方法在檢測相關時
    間序列數據的變化方面的有效性,並提供了關於虛擬貨幣市場在這ICO 繁榮-蕭條
    期間行為的見解。
    關鍵字:在線改變點檢測,Clayton copula,馬可夫模型,貝氏推論,ICO boom


    In this paper, we propose an online Bayesian changepoint detection approach for dependent
    time series data under the copula-based Markov model with the marginal distributions
    being mixture normal distributions. Simulation studies examine structural changes in
    sequential time series data with dependency, including transformation between unimodal
    and bimodal data and structural changes within bimodal data. For comparison, we consider
    the Clayton copula-based Markov model with normal marginal distributions as the
    benchmark model. The results show that the proposed model outperforms the benchmark
    model in detecting change when the correlation structure of the changes from unimodal
    data to bimodal data. In the empirical analysis, we use the daily returns of BTC, ETH, and
    NEO to identify change points in the cryptocurrency market from 2017 to early 2018. The
    results demonstrate the effectiveness of our approach in detecting changes and providing
    insight into cryptocurrency market behavior during ICO booms and busts.
    Keywords: online change point detection, Clayton copula, Markov model, Bayesian
    inference, ICO boom

    Contents Page Acknowledgements III 摘要IV Abstract V Contents VI List of Figures VIII List of Tables XI Chapter 1 Introduction 1 Chapter 2 Copulas 3 2.1 Copula function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Clayton copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.1 Clayton copula model based on the first-order Markov Chain . . . . 6 2.2.2 Mixture normal distribution . . . . . . . . . . . . . . . . . . . . . . 7 Chapter 3 Bayesian online changepoint detection 8 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1.1 Change point conditional prior . . . . . . . . . . . . . . . . . . . . 9 3.2 Posterior predictive distribution . . . . . . . . . . . . . . . . . . . . 10 3.2.1 Changepoint algorithm based on the control model . . . . . . . . . 12 Chapter 4 Simulation 17 Chapter 5 Empirical Study 28 5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.2 Parameters setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Chapter 6 Conclusion 36 Appendix A — - Figures 37 References 63

    Adams, R. P. and MacKay, D. J. (2007). Bayesian online changepoint detection.
    arXiv preprint arXiv:0710.3742.
    Aminikhanghahi, S. and Cook, D. J. (2017). A survey of methods for time series change
    point detection. Knowledge and information systems, 51:339–367.
    Barry, D. and Hartigan, J. A. (1992). Product partition models for change point problems.
    The Annals of Statistics, 20:260–279.
    Clayton, D. G. (1978). A model for association in bivariate life tables and its application in
    epidemiological studies of familial tendency in chronic disease incidence. Biometrika,
    65:141–151.
    Darsow, W. F., Nguyen, B., and Olsen, E. T. (1992). Copulas and Markov processes.
    Illinois Journal of Mathematics, 36:600 – 642.
    Genest, C. and MacKay, J. (1986). The joy of copulas: Bivariate distributions with uniform
    marginals. The American Statistician, 40:280–283.
    Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their
    applications. Biometrika, 57(1):97–109.
    James, N., Menzies, M., and Chan, J. (2021). Changes to the extreme
    and erratic behaviour of cryptocurrencies during covid-19.
    Physica A: Statistical Mechanics and its Applications, 565:125581.
    Kuo, D.-H. (2022). Online change point detection under a copula-based markov chain
    model for normal sequence data.
    Lavielle, M. and Lebarbier, E. (2001). An application of mcmc methods for the multiple
    change-points problem. Signal Processing, 81:39–53. Special section on Markov Chain
    Monte Carlo (MCMC) Methods for Signal Processing.
    Lee, S. and Baek, C. (2023). Volatility changes in cryptocurrencies: evidence from sparse
    vhar-mgarch model. Applied Economics Letters, 30(11):1496–1504.
    Lin, W.-C., Emura, T., and Sun, L.-H. (2021). Estimation under copulabased
    markov normal mixture models for serially correlated data.
    Communications in Statistics - Simulation and Computation, 50:4483–4515.
    McLachlan, G. J., Lee, S. X., and Rathnayake, S. I. (2019). Finite mixture models.
    Annual Review of Statistics and Its Application, 6:355–378.
    Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and
    Teller, E. (1953). Equation of state calculations by fast computing machines.
    Journal of Chemical Physics, 21:1087–1092.
    Metropolis, N. and Ulam, S. (1949). The monte carlo method.
    Journal of the American statistical association, 44:335–341.
    Nelsen, R. B. (2007). An introduction to copulas. Springer science & business media.
    Polunchenko, A. S. and Tartakovsky, A. G. (2012). State-of-the-art in sequential changepoint
    detection. Methodology and computing in applied probability, 14(3):649–684.
    Sklar, M. (1959). Fonctions de repartition an dimensions et leurs marges.
    Publ. inst. statist. univ. Paris, 8:229–231.
    Thies, S. and Molnár, P. (2018). Bayesian change point analysis of bitcoin returns.
    Finance Research Letters, 27:223–227.
    Truong, C., Oudre, L., and Vayatis, N. (2020). Selective review of offline change point
    detection methods. Signal Processing, 167:107299.

    QR CODE
    :::