| 研究生: |
白士庭 Shih-Ting Bai |
|---|---|
| 論文名稱: |
木屑鍋爐之PCDD/Fs及dl-PCBs排放特性研究 Characterization of PCDD/Fs and dl-PCBs Emitted from Woodchip Boilers |
| 指導教授: |
張木彬
Moo-Been Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | PCDD/Fs 、dl-PCBs 、木屑鍋爐 |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討北部兩座木屑鍋爐(簡稱為A廠及B廠)於不同操作模式對PCDD/Fs及dl-PCBs生成潛勢與排放特性之影響。A廠主要探討不同操作狀態(包含起爐、停爐及正常操作)對PCDD/Fs及dl-PCBs之影響,結果顯示因起爐為較差燃燒狀態,PCDD/Fs及dl-PCBs濃度(588.2 ng/Nm3)高於正常操作及停爐狀態;停爐狀態之PCDD/Fs及dl-PCBs濃度(41.05 ng/Nm3)則為三種操作狀態中最低,主因是木屑停止進料,缺少PCDD/Fs及dl-PCBs生成反應所需之碳源與氯源所致。B廠於不同操作模式(包含全載噴AC、全載未噴AC及半載噴AC)之測試結果顯示半載模式APCDs前PCDD/Fs及dl-PCBs濃度(113.6 ng/Nm3)較全載模式低(139.4 ng/Nm3),主因為木屑進料量減半。活性碳可有效吸附氣相PCDD/Fs及dl-PCBs,有噴活性碳之氣相PCDD/Fs及dl-PCBs去除效率(95.60%及92.05%)皆高於未噴活性碳氣相PCDD/Fs及dl-PCBs去除效率(85.74%及79.76%)。在全載噴AC模式下,A廠APCDs前PCDD/Fs及dl-PCBs濃度皆高於B廠,顯示燃燒溫度會影響PCDD/Fs及dl-PCBs之生成潛勢,A廠爐體燃燒溫度(500-850 oC)較B廠(850-925 oC)低,易造成不完全燃燒反應,PCDD/Fs及dl-PCBs濃度相對較高。若以我國中小型焚化爐每小時四公噸以下的標準視之,A廠PCDD/Fs排放濃度於三種操作狀態皆超出法規標準;B廠則皆符合法規標準。木屑燃燒產生大量粒狀物,APCDs前煙道氣中粒狀物濃度相對較高,就氣/固相分布而言,A、B兩廠APCDs前PCDD/Fs皆以固相為主。不同條件之木屑燃燒,不會影響PCDD/Fs優勢物種分布,A、B兩廠APCDs前皆以1,2,3,4,6,7,8-H7CDF、1,2,3,4,6,7,8-H7CDD及O8CDD為優勢物種;dl-PCBs則受到進料組成及操作條件之影響,生成物種之分布有明顯差異。A、B兩廠BF飛灰戴奧辛類化合物濃度分別為979.2及406.2 ng/g。全載噴AC模式下A廠PCDD/Fs及dl-PCBs之去除效率分別為95.56%及88.63%;B廠PCDD/Fs及dl-PCBs之去除效率則分別為99.29%及94.94%。A廠PCDD/Fs及dl-PCBs之排放係數分別為17.24及1.120 μg WHO-TEQ/ton;B廠PCDD/Fs及dl-PCBs之排放係數則分別為1.520及0.1400 μg WHO-TEQ/ton。
This study characterizes the formation and emission of PCDD/Fs and dl-PCBs in two woodchips boilers during different operating periods. Two woodchips boilers (referred to as Plant A and B) investigated in this study are located in northern Taiwan. The sampling program of Plant A was conducted during different operating stages, including start-up, normal operation and shut-down periods. The results indicate that PCDD/F and dl-PCB concentrations (588.2 ng/Nm3) at APCDs inlet during the start-up period are much higher than those measured during normal operation and shut-down periods due to unstable combustion conditions. Concentrations of PCDD/F and dl-PCB (41.05 ng/Nm3) measured at APCDs inlet during the shut-down period were even lower than that measured during the normal operating period. It is due to the lack of carbon and chlorine sources since woodchip was not fed into the boiler during the shut-down period. The Plant B was investigated under three operating conditions, including full feed loading with injection of activated carbon, full feed loading without injection of activated carbon and half feed loading with injection of activated carbon. PCDD/Fs and dl-PCBs concentrations (113.6 ng/Nm3) measured at APCDs inlet during the half feed loading are lower than those measured during the full feed loading (139.4 ng/Nm3) due to the reduction of input woodchips. The removal efficiences of gas-phase PCDD/Fs and dl-PCBs achieved with ACI+BF are 95.60% and 92.05%, respectively, which are higher compared to the case without injection of activated carbon (85.74% and 79.76%, respectively). It demonstrates that gas-phase PCDD/Fs and dl-PCBs emissions can be effectively reduced by activated carbon injection. Durig full feed loading with the injection of activated carbon, PCDD/F and dl-PCB concentrations at APCDs inlet of the Plant A are significantly higher than those measured in the Plant B, due to the lower combustion temperature (500-850 oC) compared with Plant B (850-925 oC). Combustion condition remarkably affects PCDD/F and dl-PCB formation within the woodchip combustion process. The TEQ concentration of PCDD/Fs measured at the stack of the Plant A during different operating stages are significantly higher than the emission limit, while those of Plant B are lower than the regulation limit (0.5 ng I-TEQ/Nm3). For both Plants A and B, solid-phase PCDD/Fs dominate at APCDs inlet during different operating conditions because combustion of woodchips generates high concentration particulate matter. Different operating stages of woodchips combustion do not affect distributions of PCDD/F congeners significantly. Major PCDD/F congeners at APCDs inlet of Plants A and B during different periods include 1,2,3,4,6,7,8-HpCDF, 1,2,3,4,6,7,8-HpCDD and OCDD. The composition of feeding materials and different operating conditions affect the distributions of dl-PCB congeners. Concentrations of dioxin (PCDD/Fs+dl-PCBs) in the BF ash of Plants A and B during full feed loading with injection of activated carbon are measured 979.2 and 406.2 ng/g. Removal efficiencies of PCDD/Fs and dl-PCBs of the Plant A are 95.56% and 88.63%, respectively, while those of the Plant B are 99.29% and 94.94%. PCDD/Fs and PCBs emission factors of Plant A are 17.24 and 1.120 μg WHO-TEQ/ton, respectively. For the Plant B, the emission factors of PCDD/Fs and PCBs are 1.520 and 0.1400 μg WHO-TEQ/ton, respectively.
Addink, R., Cnubben, P. and Olie, K. “Formation of polychlorinated dibenzo-p dioxins/dibenzofurans on fly ash from precursors and carbon model compounds”, Carbon, Vol.33, pp.1463-1471, 1995.
2. Altarawneh, M., Dlugogorski, B. Z., Kennedy, E. M. and Mackie, J. C., “Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs)”, Progress in Energy and Combustion Science, Vol.35(3), pp.245-274, 2009.
3. Atkins, A., Bignal, K.L., Zhou, J.L. and Cazier, F., “Profiles of polycyclic aromatic hydrocarbons and polychlorinated biphenyls from the combustion of biomass pellets”, Chemosphere, Vol.78, pp.1385-1392, 2010.
4. Ballschniter, K., Zoller, W., Scholtz, C. and Nottrodt, A., “Destruction of PCDD and PCDF in bleached pulp by chlorine dioxide treatment”, Chemosphere, Vol.12, pp.585-597, 1983.
5. Bhargava, A., Dlugogorski, B. Z. and Kennedy, E. M., “Emission of polyaromatic hydrocarbons, polychlorinated biphenyls and polychlorinated dibenzo-p-dioxins and furans from fires of wood chips”, Fire Safety Journal, Vol.37, pp.659-672, 2002.
6. Blumenstock, M., Zimmermann, R., Schramm, K.W. and Kettrup, A., “Influence of combustion conditions on the PCDD/F-, PCB-, PCBzand PAH-concentrations in the post-combustion chamber of a waste incineration pilot plant”, Chemosphere, Vol.40, pp.987-993, 2000.
7. Bonte, J.L., Fritsky, K.J., Plinke, M.A. and Wilken, M., “Catalytic destruction of PCDD/F in a fabric filter: experience at a municipal waste incinerator in Belgium”, Waste Management, Vol.22, pp.421-426, 2002.
8. Brink, R. W., Louw, R. and Mulder, P., “Formation of polychlorinated benzenes
during the catalytic combustion of chlorobenzene using a Pt/γ-Al2O3 catalyst”, Applied Catalysis B:Environmental, Vol.16, pp.219-226, 1998.
9. Chang, S. H., Chi, K. H., Young, C. W., Hong, B. Z. and Chang, M. B., “Effect of fly ash on catalytic removal of gaseous dioxins over V2O5-WO3 catalyst of a sinter plant”, Environmental Science & Technology, Vol.43, pp.7523-7530, 2009.
10. Chang, Y. M., Hung, C. Y., Chen, J. H., Chang, C. T. and Chen, C. H., “Minimum feeding rate of activated carbon to control dioxin emissions from a large-scale municipal solid waste incinerator”, Journal of Hazardous Materials, Vol.161, pp.1436-1443, 2009.
11. Chang, M. B. and Lin, J.J., “Memory effect on dioxin emissions from municipal waste incinerator in Taiwan”, Chemosphere, Vol.48, pp.1151-1157, 2001.
12. Chen, T., Zhan, M.X. and Lin, X.Q., “Inhibition of de novo synthesis of PCDD/Fs on model fly ash by sludge drying gases”, Chemosphere, Vol.114, pp. 226-232, 2014.
13. Chi, K. H., Chang, M. B., Chang-Chien G. P and Lin C., “Characteristic of PCDD/F congener distributions in gas/particulate phases and emissions from two muncipial solid waste incinerations in Taiwan”, Science of the Total Environment, Vol.347(1-3), pp.148-162, 2005.
14. Dickson, L.C., Lenoir, D. and Hutzinger, O., “Surface-catalyzed formation of chlorinated dibenzodioxins and dibenzofurans during incineration”, Chemosphere, Vol.19, pp.277-282, 1989.
15. Evans, C.S. and Dellinger, B., “Mechanisms of dioxin formation from the high-temperature pyrolysis of 2-Chlorophenol”, Environmental Science & Technology, Vol.37, pp.1325-1330, 2003.
16. Evans, C.S. and Dellinger, B., “Mechanisms of dioxin formation from the high-temperature oxidation of 2-Chlorophenol”, Environmental Science & Technology, Vol.39, pp.122-127, 2005.
17. Everaert, K. and Baeyens, J., “The formation and emission of dioxin in large scale thermal processes”, Chemosphere, Vol.46, No.7-10, pp.439-448, 2002.
18. Font, R., Esperanza, M. and Garcia, A. N., “Toxic by-products from the combustion of kraft lignin”, Chemosphere, Vol.52 (6), pp.1047-1058, 2003.
19. Fritsky, K.J., Kumm, J.H. and Wilken, M., “Combined PCDD/F destruction and particulate control in a baghouse: experience with a catalytic filter system at a medical waste incineration plant”, Journal of Air and Waste Management, Vol.51, pp.1642-1649, 2001.
20. Garcia, A. N., Esperanza, M. M. and Font, R., “Comparison between product yields in the pyrolysis and combustion of different refuse”, Journal of Analytical and Applied Pyrolysis, Vol.68-69, pp.577-598, 2003.
21. Ghorishi, S.B. and Altwicker, E.R., “Formation of polychlorinated dioxins, furans, benzenes, and phenols in the post-combustion region of heterogeneous combustor:effect of bed material and post combustion temperature”, Environmental Science & Technology, Vol.29, No.5, pp.1158-1182, 1995.
22. Gullett, B. K., Bruce, K. R. and Beach, L. O., “Mechanistic steps in the production of PCDD and PCDF during waste combustion”, Chemosphere, Vol.25, No.7-10, pp.1387-1392, 1998.
23. Han, J.S., Rowell, J.S., In: Rowell, R.M., Young, R.A., Rowell, J.K., editors. Paper and composites from agro-based resources. Boca Raton, FL: CRC Lewis Publishers; pp.83-134, 1997.
24. Hung, P.C., Chang, S.H., Lin, S.H., Buekens, A. and Chang, M.B., “Pilot tests on the catalytic filtration of dioxins”, Environmental Science & Technology, Vol.48, pp.3995-4001, 2014.
25. Hung, P.C., Chi, K.H., Chen, M.L. and Chang, M.B., “Characteristics of dioxin emissions from a waelz plant with acid and basic kiln mode”, Journal of Hazardous Materials, Vol.201-202, pp.229-235, 2012.
26. IOM (Institute of Medicine), “Veterans and agent: Updata 2004”, Nationa academy press, Washington, D.C., pp.118, 2005.
27. Jang, Y. C., Lee, C., Yoon, O. S. and Kim, H., “Medical waste management in
Korea”, Journal of Environmental Management, Vol.80, pp.107-115, 2006.
28. Karadenir, A., Bakoglu, M., Taspinar, F. and Ayberk, S., “Removal of PCDD/Fs from flue gas by a fixed-bed activated carbon filter in a hazardous waste incinerator”, Environmental Science & Technology, Vol.38, pp.1201-1207, 2004.
29. Khalfi, A., Trouve, G., Delobel, R. and Delfosse, L., “Correlation of CO and PAH emissions during laboratory-scale incineration of wood waste furnitures”, Journal Analytic Application Pyrolysis, Vol.56, pp.243-262, 2000.
30. Kulkarni, P. S., Crespo, J. G. and Afonso, C. A., “Dioxin sources and current remediation technologies-a review”, Environment International, Vol.34, pp.139-153, 2008.
31. Launhardt, T. and Thoma, H., “Investigation on organic pollutants from a domestic heating system using various solid biofuels”, Chemosphere, Vol.40, pp.1149-1157, 2000.
32. Leclerc, D., Duo. W. L. and Vessey M., “Effects of combustion and operation conditions on PCDD/PCDF emissions from power boilers burning salt-laden wood waste“, Chemosphere, Vol.63, pp.676-689, 2006.
33. Lemieux, P. M., Lee, C. W., Ryan, J. V. and Lutes, C. C., “Bench-scale studies on the simultaneous formation of PCBs and PCDD/Fs from combustion systems“, Waste Management, Vol.21, pp.419-425, 2001.
34. Liu, P. Y., Zheng, M. H., Zhang, B. and Xu, X. B. “Mechanism of PCBs formation from the pyrolysis of chlorobenzenes”, Chemosphere, Vol.43, pp.783-785, 2001.
35. Lundin, L., Francisca, M., Forsberg, C., Nordenskjold, C. and Jansson, S., “Reduction of PCDD, PCDF and PCB during co-combustion of biomass with waste products from pulp and paper industry”, Chemosphere, Vol.91, pp.797-801, 2013.
36. Lundin, L. and Jansson, S., “ The effects of fuel composition and ammonium sulfate addition on PCDD, PCDF, PCN and PCB concentrations during the combustion of biomass and paper production residuals”, Chemosphere, Vol.94, pp.20-26, 2014.
37. Masunaga, S., Takasuga, T. and Nakanishi, J., “Dioxin and dioxin-like PCBs impurities in some Japanese agrochemical formulations”, Chemosphere, Vol.44, pp.843-885, 2000.
38. McKay, G., “Dioxin characterization, formation and minimization during municipal solid waste incineration: review”, Chemical Engineering Journal Vol.86, pp.343-368, 2002.
39. Miligan, M.S. and Altwicker, E., “Formation of dioxin: competing rates between chemical similar precursors and de novo reaction”, Environmental Science & Technology, Vol.27, pp.1595-1601, 1993.
40. Moreno, A. I., Juan, R. F. and Conesa, J. A., “Characterization of gaseous emissions and ashes from the combustion of furniture waste”, Waste Management, Vol.58, pp.299-308, 2016.
41. Nganai, S., Lomnicki, S. and Dellinger, B., “Ferric oxide mediated formation of PCDD/Fs from 2-monochlorophenol”, Environmental Science & Technology, Vol.43, pp.368-373, 2009.
42. Nganai, S., Lomnicki, S. and Dellinger, B., “Formation of PCDD/Fs from the copper oxide-mediated pyrolysis and oxidation of 1,2-dichlorobenzene”, Environmental Science & Technology, Vol.45, pp.1034-1040, 2011.
43. Nganai, S., Lomnicki, S. and Dellinger, B., “PCDD/PCDF ratio in the precursor formation model over CuO surface”, Environmental Science & Technology, Vol.48, pp.13864-13870, 2014.
44. Olie, K., Vermeulen, P. L. and Hutzinger, O., “Chlorodibenzo-p-dioxins and chlorobenzofurans are trace compound of fly ash and flue gas of some muncipial incinerators in the Netherlands”, Chemosphere, Vol.6, pp.455-459, 1977.
45. Pandelova, M., Stanev, I., Henkelmann, B. and Schramm, Karl., “Correlation of PCDD/F and PCB at combustion experiments using wood and hospital waste. Influence of (NH4)2SO4 as additive on PCDD/F and PCB emissions”, Chemosphere, Vol.75, pp.685-691, 2009.
46. Parizek, T., Bébar, L. and Stehlík, P., “Persistent pollutants emission abatement in waste-to-energy systems”, Clean Technology Environment Policy, Vol.10, pp.147-153, 2008.
47. Pekárek, V., Grabic, R., Markund, S., Puncochar, M. and Ullrich, J., “Effects of oxygen on formation of PCB and PCDD/F on extracted fly ash in the presence of carbon and cupric salt” Chemosphere, Vol.43, pp.1777-1782, 2001.
48. Preto, F., McCleave, R., McLaughlin, D. and Wang, J., “Dioxins/furans emissions from fluidized bed combustion of salt-laden hog fuel” Chemosphere, Vol.58, pp.935-941, 2005.
49. Salthammer, T., Klipp, H., Peek, R. D. and Marutzky, R., “Formation of polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzo-furans (PCDF) during the combustion of impregnated wood” Chemosphere, Vol.30, pp.2051-2060, 1995.
50. Samaras, P., Skodras, G., Sakellaropoulos, G. P., Blumentstock, M., Schramm, K.W. and Kettrup, A., “Toxic emissions during co-combustion of biomass-waste wood-lignite blends in an industrial boiler”, Chemosphere, Vol.43, pp.751-755, 2001.
51. Shafizadeh, F., Bradbury, A. G., DeGroot, W. F. and Aanerud, T. W., “Role of inorganic additives in the smoldering combustion of cotton cellulose”, Industrial Engineering Chemistry Prodoct Research Development, Vol.21, pp.97-101, 1982.
52. Shaub, W. M. and Tsang, W., “Dioxin formation in incinerators”, Environmental Science & Technology, Vol.17, pp.721-790, 1983.
53. Sjostrom, E. “Wood chemistry: fundamentals and application”, San Diego: Academic press, 1993.
54. Skodras, G., Grammelis, P., Samaras, P., Vourliotis, P., Kakaras, E. and Sakellaropoulos, G. P., “Emissions monitoring during coal waste wood co-combustion in an industrial steam boiler”, Fuel, Vol.81, pp.547-554, 2002.
55. Skodras, G., Palladas, A., Kaldis, S. P. and Sakellaropoulos, G. P., “Cleaner co-combustion of lignite-biomass-waste blends by utilizing inhibiting compounds of toxic emissions”, Chemosphere, Vol.67, pp.191-197, 2007.
56. Stanmore, B. R., “The formation of dioxins in combustion systems”, Combustion and Flame, Vol.136, pp.398-427, 2004.
57. Tame, N. W., Dlugogorski, B. Z. and Kennedy, E. M. “Conversion of wood pyrolysates to PCDD/F”, Proceedings of the Combustion Institute, Vol.32, pp.665-671, 2009.
58. Tirler, W., Mair, K., Donegà, M., Voto, G. and De Carli, A., “PCDD/F removal with catalytic filters in a municipal solid waste incineration”, Organohalogen Compounds, Vol.72, pp.1561-1564, 2010.
59. Tuppurainen, K., Asikainan, A., Ruokojarvi, P. and Ruuakanen, J., “Perspectives on the formation of polychlorinated dibenzo-p-dioxin and dibenzofurans during municipal solid waste incineration and other combustion processes”, Accounts Chemical Research, Vol.36, pp.652-658, 2003.
60. US EPA, “Health assessment document for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds”, EPA/600/Bp-92/001c Estimating Exposure to Dioxin-like Compounds, EPA/600/6-88/005Cb, Office of Research and Development, Washington, DC, 1994.
61. US EPA, “Health assessment document for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds”, EPA/600/Bp-92/001c Estimating Exposure to Dioxin-like Compounds, EPA/600/6-88/005Cb, Office of Research and Development, Washington, DC, 1994b.
62. Van Caneghem, J., Block, C. and Vandecasteele, C., “Destruction and formation of dioxin-like PCBs in dedicated full scale waste incinerators”, Chemosphere, Vol.94, pp.42-47, 2014a.
63. Van den Berg, M., Birnbaum, L. S., Denison, M., Vito, M. D., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D., Tohyama, C., Tritscher, A., Tuomisto, J., Tysklind, M., Walker, N. and Peterson, R. E., ”The 2005 world health organization re-evaluation of human and mammalian toxic equivalency factors for dioxin and dioxin-like compounds”, Toxscience Advance Access, pp.52, 2006.
64. Wang, H.C., Hwang, J. F., Chi, K.H. and Chang, M.B., “Formation and removal of PCDD/Fs in a municipal waste incinerator during different operation periods”, Chemosphere, Vol.67, pp.S177-S184, 2007.
65. Weber, R., Iino, F., Imagawa, T., Takeuchi, M., Sakurai, T. and Sadakata, M., “ Formation of PCDF, PCDD, PCB, and PCN in de novo synthesis from PAH: Mechanistic aspects and correlation to fluidized bed incinerators”, Chemosphere, Vol.44, pp.1429-1438, 2001.
66. Weber, R., Gaus, C., Tysklind, M., Johnston, P., Forter, M., Hollert, H., Heinisch, E., Holoubek, I., Lloyd-Smith, M., Masunaga, S., Moccarelli, P., Santillo, D., Seike, N., Symonsm, R., Torres, J.P.M., Verta, M., Varbelow, G., Vijgen, J., Watson, A., Costner, P., Woelz, J., Wycisk, P. and Zennegg, M., “Dioxin- and POP-contaminated sites – contemporary and future relevance and challenges”, Environmental Science and Pollution Research, Vol.15, pp.363-393, 2008.
67. Williamson, P., “Production and control of polychlorinated dibenzo-p-dioxin and dibenzofurans in incineration system: a review”, Presented at 87th AWMA Annual Meeting and Exhibition, Ohio, June 19-24, 1994.
68. Wunderli, S., Zennegg, M., Samuel, I. S., Gujer, E., Moser, U., Wolfensberger, M., Hasler, P., Noger, D., Studer, C. and Karlaganis, G.,”Determination of polychlorinated dibenzo-p-dioxin and dibenzo-furans in solid residus from wood combustion by HRGC/HRMS”, Chemosphere, Vol.40, pp.641-649, 2000.
69. Xu, Z., Fritsky, K.J., Graham, J. and Dellinger, B., ”Catalytic destruction of PCDD/F:laboratory test and performance in a medical waste incinerator”, Organic Compound, Vol.45, pp.419-422, 2000.
70. Yasuhara, A., Katami, T. and Shibamoto, T., ”Formation of PCDDs, PCDFs, and Coplanar PCBs from incineration of various woods in the presence of chlorides”, Environmental Science & Technology, Vol.37, pp.1563-1567, 2003.
71. Yang, J., Yan, M., Li, X., Lu, S., Chen, T., Yan, J., Olie, K. and Buekens, A., ”Formation of dioxins on NiO and NiCl2 at different oxygen concentrations”, Chemosphere, Vol.133, pp.97-102, 2015.
72. 洪保鎮,「熱裂解系統對戴奧辛之去除特性研究」,博士論文,國立中央大學,2014。
73. 鄭銚強,「焚化系統中抑制戴奧辛生成之初步研究」,碩士論文,國立中央大學,2003。
74. 張書豪,「以活性碳吸附煙道排氣中戴奧辛之初步研究」,碩士論文,國立中央大學,2000。
75. 黃秋華,「焚化系統及電弧爐煉鋼廠多氯聯苯排放特性之初步探討」,碩士論文,國立中央大學,2004。
76. 紀凱獻,「戴奧辛於煙道氣及大氣中之氣固相分布特性」,博士論文,國立中央大學,2004。
77. 環保署,「固定污染源戴奧辛及重金屬調查及管制計畫」,2013。
78. 環保署,「固定污染源戴奧辛及重金屬調查及管制計畫」,2014。
79. 環保署,「戴奧辛及重金屬排放源輔導管理(含有害空氣污染物)暨支援環保案件調查計畫」,2015。
80. 彰化縣環保局,「105年度彰化縣戴奧辛及重金屬管制計畫」,2015。
81. 高雄市環保局,「日本先進垃圾焚化技術考察」,2010。