跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡芳英
Fang-Ying Tsai
論文名稱: Search for Pair Production of t*-> t + photon : Estimation of Photon Purity and Study of the Top and W Mass Resolution
Search for Pair Production of t*-> t + photon : Estimation of Photon Purity and Study of the Top and W Mass Resolution
指導教授: 余欣珊
Shin-Shan Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 59
中文關鍵詞: 自旋3/2頂垮克
外文關鍵詞: pair production of t* to top+photon
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Randall-Sundrum模型提供一個合理的方式解釋新物理和Higgs Boson重量的超大修正,並且預測了一個最輕自旋數為3/2的Kaluza-Klein粒子。我們利用LHC的能量尺度找尋經由pair-production產生的帶有自旋3/2的右旋頂垮克。本篇論文在19.6 fb^(-1)的質子質子對撞數據且總碰撞能量為8 TeV下,利用χ^2 sorting的方法重建t* 粒子, 此方法包含了找mass resolution的值和neutrino在z方向動量正確率最高的解。我們可以利用 χ^2和 Likelihood fitter 去估計data裡那些從標準模型來的主要背景干擾數量。我們利用質心能量在7TeV且數量為2.4到35.9pb^(-1)的單光子數據,來測試這兩種估計方法的正確性。


    Randall-Sundrum model provides a reasonable way to explain the hierarchy problem and it predicts the lightest spin-3/2 Kaluza-Klein particle. We are searching for the singlet top of spin-3/2 through pair-production that may be produced at LHC energies. This thesis presents the χ^2 sorting method, which includes studies of mass resolution and the probability of getting correct solution of neutrino pz to reconstruct spin-3/2 particle at √s=8 TeV using 19.6 fb^(-1)of proton-proton collision data collected by CMS. In order to estimate dominated background in data, we also provide two methods, χ^2 fitter and Likelihood fitter. These methods use inclusive photon at √s=7 TeV and the data sample corresponds from 2.4 to 35.9 pb^(-1).

    Content 摘要 I Abstract II 誌謝 III Chapter 1 Introduction 1 1.1 The Standard Model 1 1.2 Search of Heavy Quark t* 3 1.2.1 The Randall-Sundrum Model 3 1.2.2 Basics of Kaluza-Klein theory 5 1.2.3 Spin-3/2 excitations in the R-S Model 7 Chapter 2 CMS Detector in LHC 11 2.1 The Large Hadron Collider 11 2.2 The Compact Muon Solenoid Detector 12 2.2.1 Tracker 15 2.2.2 Electromagnetic Calorimeter 17 2.2.3 Hadronic Calorimeter 18 2.2.4 Muon Chamber 19 2.2.5 Magnet system 20 Chapter 3 Reconstruction of Physics Objects 21 3.1 Software Setup 21 3.1.1 Event Generator 21 3.1.2 Detector Simulation 22 3.1.3 Trigger Simulation 22 3.2 Final-State Objects Reconstruction 22 3.3 Photon Reconstruction 24 3.3.1 Photon Selection Variables 24 3.3.2 Track Finding for Conversion 26 3.4 Electron Reconstruction 27 3.4.1 Electron Selection Variables 28 3.4.2 Photon Conversion Rejection 29 3.5 Muon Reconstruction 30 3.6 Jet Reconstruction 30 Chapter 4 Analysis 32 4.1 Monte Carlo Simulation of Background 32 4.1.1 Estimation of Inclusive Photon 34 4.1.2 Photon Purity 39 4.2 Mass χ2 Sorting 43 4.2.1 Longitudinal Momentum of the Neutrino 43 4.2.2 Mass Resolution 45 Chapter 5 Conclusion 50 Appendix 51 Efficiency 51 Mass Resolution 52 Reference 57

    Reference
    [1] CPEP Contemporary Physics Education Project.
    [2] T. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) K1, 966 (1921); O. Klein, Z. Phys. 37, 895 (1926).
    [3] J.Polchinski, String Theroy, Cambridge, Vo1. I, chap. 8: Toroidal com-pactification and T-duality (1995).
    [4] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999) [arXiv: hep-ph/9905221]; Phys. Rev. Lett. 83, 4690 (1999) [arXiv: hep-th/9906064].
    [5] T. Gherghetta and A. Pomarol, Nucl. Phys. B 586, 141 (2000) [arXiv: hep-ph/0003129].
    [6] Copyright 2005 The New York Times Company.
    [7] S. B. Giddings, S. Kachru and J. Polchinski, Phys. Rev. D 66 (2002) 106006 [arXiv: hep-th/0105097].
    [8] Physics searches at the LHC. arXiv: 0912.3259 [hep-ph] 4 Sep 2010.
    [9] Maxime Gabella. The Randall-Sundrum Model. June 2006 IPPC, EPFL.
    [10] Babiker Hassanain, John March-Russell and J. G. Rosa, “On the possibility of light string resonances at the LHC and Tevatron from Randall-Sundrum throats”[arXiv: 0904.4108v2]
    [11] P. W. Higgs, “Broken symmetries and the masses of gauge bosons,” Phys. Rev. Lett., vol. 13, pp. 508-509, Oct 1964. 1.1
    [12] P. Higgs, “Broken symmetries, massless particles and gauge fields,” Physics Letters, vol. 12, no. 2, pp. 132-133, 1964. 1.1
    [13] CERN, “The CERN accelerator complex.” http://public.web.cern.ch/public/en/research/AccelComplex-en.html,2012.
    [14] The CMS Collaboration, “The CMS experiment at the CERN LHC,” Journal of Instrumentation, vol. 3, 2008. 2.2
    [15] G. Bayatian et al., “CMS Physics Technical Design Report Volume I: Detector Performance and Software,” Technical Design Report CMS, 2006.
    [16] The CMS Collaboration, The CMS tracker system project: Technical Design Report. Technical Design Report CMS, Geneva: CERN, 1997. 2.2.3
    [17] The CMS Collaboration, The CMS tracker: addendum to the Technical Design Report. Technical Design Report CMS, Geneva: CERN, 2000. 2.2.3
    [18] The CMS ECAL: Technical Design Report. Technical Design Report, Geneva: CERN, December 1997. 2.2.4
    [19] P.Bloch, R. Brown, P.Lecoq, and H. Rykaczewski, Changes to CMS ECAL electronics: addendum to the Technical Design Report. Techical Design Report CMS, Geneva: CERN, 2002. 2.2.4
    [20] CMS Collaboration, CERN/LHCC 20-016(2006), CMS TDR 8.1
    [21] The CMS Collaboration, The CMS hadron calorimeter project: Technical Design Report. Technical Design Report CMS, Geneva: CERN, 1997. 2.2.5
    [22] J. Damgov and S. Kunori, private commuication
    [23] Efe Yazgan, Thesis, Department of Physics, Middle East Technical University (2007)
    [24] The CMS Collaboration, The CMS muon project: Technical Design Report. Technical Design Report CMS, Geneva: CERN, 1997 2.2.6
    [25] C. D. Jonew et al., “The new CMS data model and framework,” in CHEP’06 Conference Proceedings. 2006.
    [26] T. Sjostrand, S. Mrenna and P. Skands, “PYTHIA 6.4 Physics and Manual,” JHEP 0605 (2006).
    [27] S. Agostinelli et al., “Geant4- A Simulation Toolkit,” Nuclear Instruments and Methods A 506 (2003).
    [28] S. Agostinelli et al., GEANT4: A simulation toolkit, Instrum. and Methods, A506:250-303, 2003.
    [29] S. Abdullin et al., “The Fast Simulation of the CMS Detector at LHC,” CMS Conference Report 297 (2010).
    [30] E. Meschi et al., Electron Reconstruction in the CMS Electronmagnetic. Calorimeter, CMS Note 2001/034.
    [31] P. Fayet, Nucl. Phys. B 90, 104 (1975).
    [32] N. Marinelli. CMS Note, 2006/005, 2006/
    [33] Marinelli N., Kolberg T., Jessop C., Ruchti, R. CMS Analysis Note, 2008/102, 2008.
    [34] The CMS Collaboration. CMS Physics Analysis Summary, 2010/005, 2010.
    [35] W. Adam, R. Fruhwirth, A. Strandlie, T. Todorov, Reconstruction of electrons with the Gaussian-sum filter in the CMS tracker at the LHC, J. Phys. G: Nucl. Part. Phys. 31 (2005) N9-N20.
    [36] C. Charlot, C. Rovelli, Y. Sirois, Reconstruction of Electron Tracks Using Gaussian Sum Filter in CMS, CMS Analysis Note AN-2005-011 (2006).
    [37] M. Cacciari, G. P. Salam, and G. Soyez, “The Anti-k(t) jet clustering algorithm,” JHEP 0804 (2008) 063, arXiv: 0802.1189 [hep-ph].
    [38] J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, et al.,” MadGraph/MadEvent v4: The New Web Generation,” JHEP 0709 (2007) 028, arXiv: 0706.2334 [hep-ph].
    [39] S.Frixion, P. Nason, and G. Ridolfi, “A Positive-weight next-to-leading-order Monter Carlo for heavy flavor hadroproduction,” JHEP 0709 (2007) 126.
    [40] S. Alioli, P. Nason, C. Oleari, and E. Re, “NLO single-top production matched with shower in POWHEG: s- and t-channel contributions,” JHEP 0909 (2009) 111, arXiv: 0907.4076 [hep-ph].
    [41] E. Re, “Single-top Wt-channel production matched with parton showers using the POWHEG method,” Eur.Phys.J. C71 (2011) 1547, arXiv: 1009. 2450 [hep-ph].
    [42] R. and Fruhwirth. Application of kalman _ltering to track and vertex _tting. http://www.sciencedirect.com/science/article/pii/0168900287908874, 1987.

    QR CODE
    :::