| 研究生: |
鄭豫立 Yuli cheng |
|---|---|
| 論文名稱: |
近地小行星的分類和軌道動力學 Taxonomic Classification and Orbital Dynamics of Near-Earth Asteroids |
| 指導教授: |
葉永烜
Wing-Huen Ip |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 天文研究所 Graduate Institute of Astronomy |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 近地小行星 、軌道動力學 、機器學習 |
| 外文關鍵詞: | Near-Earth asteroid, Orbital dynamics, Machine learning |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們的目標是對自2010年至今的鹿林光度觀測數據集進行分類。在進行這項工作之前,
我們使用了主成分分析並應用了顏色-顏色指數來編目近地小行星(NEAs)。然而,由
於它們的顏色數值相似,有時很難區分S型和Q型NEAs的相對反射率。為了使預測結果
更準確,我們應用了機器學習技術。我們使用了幾種算法,包括決策樹、隨機森林、
邏輯回歸、支持向量機和神經網絡
We aim to classify the dataset of Lulin photometry observations from 2010 to the present.
Prior to this study, we utilized Principle Component Analysis and applied a color-color
index to catalog near-Earth Asteroids (NEAs). However, distinguishing between the relative reflectance of S-type and Q-type NEAs proved challenging due to the similarity in
their color values. To enhance the accuracy of our predictions, we incorporated machine
learning techniques. We employed several algorithms, including decision trees, random
forests, logistic regression, support vector machines, and neural networks.
Abiodun O. I., Jantan A., Omolara A. E., Dada K. V., Mohamed N. A., Arshad H., 2018,
Heliyon, 4, e00938
Amari S.-i., Wu S., 1999, Neural Networks, 12, 783
Anguita D., Ghio A., Greco N., Oneto L., Ridella S., 2010, in The 2010 international joint
conference on neural networks (IJCNN). pp 1–8
Asphaug E., 1997, Meteoritics & Planetary Science, 32, 965
Asphaug E., Benz W., 1994, Nature, 370, 120
Binzel R. P., Rivkin A. S., Stuart J. S., Harris A. W., Bus S. J., Burbine T. H., 2004,
Icarus, 170, 259
Binzel R. P., et al., 2010, Nature, 463, 331
Bishop C. M., 1994, Review of scientific instruments, 65, 1803
Bisong E., Bisong E., 2019, Building machine learning and deep learning models on google
cloud platform: A comprehensive guide for beginners, pp 243–250
Bolin B. T., Morbidelli A., Walsh K. J., 2018, A&A, 611, A82
Bottke W. F., 2002, in AAS/Division of Dynamical Astronomy Meeting #33. p. 02.01
Bottke W. F., Vokrouhlick´y D., Broz M., Nesvorn´y D., Morbidelli A., 2001, Science, 294,
1693
89
BIBLIOGRAPHY 90
Bottke W. F., Durda D. D., Nesvorn´y D., Jedicke R., Morbidelli A., Vokrouhlick´y D.,
Levison H. F., 2005, Icarus, 179, 63
Breiman L., 2001, Machine learning, 45, 5
Bus S. J., Binzel R. P., 2002, Icarus, 158, 146
Cao W., Wang X., Ming Z., Gao J., 2018, Neurocomputing, 275, 278
Carry B., Solano E., Eggl S., DeMeo F. E., 2016, Icarus, 268, 340
Chapman C. R., Morrison D., Zellner B., 1975, Icarus, 25, 104
Charbuty B., Abdulazeez A., 2021, Journal of Applied Science and Technology Trends,
2, 20
Chrbolkov´a K., et al., 2021, Astronomy & Astrophysics, 654, A143
Cios K. J., Swiniarski R. W., Pedrycz W., Kurgan L. A., Cios K. J., Swiniarski R. W.,
Pedrycz W., Kurgan L. A., 2007, Data Mining: A Knowledge Discovery Approach, pp
257–288
Clark B., Bus S., Rivkin A., Shepard M., Shah S., 2004, The Astronomical Journal, 128,
3070
Dayan P., Sahani M., Deback G., 1999, The MIT encyclopedia of the cognitive sciences,
pp 857–859
DeMeo F. E., Binzel R. P., Slivan S. M., Bus S. J., 2009, Icarus, 202, 160
DeMeo F. E., Binzel R. P., Lockhart M., 2014, Icarus, 227, 112
DeMeo F. E., Polishook D., Carry B., Burt B. J., Hsieh H. H., Binzel R. P., Moskovitz
N. A., Burbine T. H., 2019, Icarus, 322, 13
Debnath R., Takahide N., Takahashi H., 2004, Pattern Analysis and Applications, 7, 164
Dobrovolskis A. R., 1990, Icarus, 88, 24
BIBLIOGRAPHY 91
Dreiseitl S., Ohno-Machado L., 2002, Journal of biomedical informatics, 35, 352
Ghaddar B., Naoum-Sawaya J., 2018, European Journal of Operational Research, 265,
993
Goeman J., Meijer R., Chaturvedi N., 2012, cran. r-project. or
Han S., Pool J., Tran J., Dally W., 2015, Advances in neural information processing
systems, 28
Hastie T., Tibshirani R., Friedman J. H., Friedman J. H., 2009, The elements of statistical
learning: data mining, inference, and prediction. Vol. 2, Springer
Hecht-Nielsen R., 1992, in , Neural networks for perception. Elsevier, pp 65–93
Hiroi T., Bell J. F., Takeda H., Pieters C. M., 1993, Icarus, 102, 107
Holmberg J., Flynn C., Portinari L., 2006, Monthly Notices of the Royal Astronomical
Society, 367, 449
Hoo Z. H., Candlish J., Teare D., 2017, What is an ROC curve?
Howley T., Madden M. G., 2005, Artificial intelligence review, 24, 379
Jais I. K. M., Ismail A. R., Nisa S. Q., 2019, Knowledge Engineering and Data Science,
2, 41
John G. H., 1995, in KDD. pp 174–179
Kaelbling L. P., Littman M. L., Moore A. W., 1996, Journal of artificial intelligence
research, 4, 237
Karsmakers P., Pelckmans K., Suykens J. A., 2007, in 2007 International Joint Conference
on Neural Networks. pp 1756–1761
Kim Y., Hirabayashi M., Binzel R. P., Brozovi´c M., Scheeres D. J., Richardson D. C.,
2021, Icarus, 358, 114205
BIBLIOGRAPHY 92
Kingsford C., Salzberg S. L., 2008, Nature biotechnology, 26, 1011
Kumar V., Kalitin D., Tiwari P., 2017, in 2017 international conference on computing,
communication and automation (ICCCA). pp 32–37
LaValley M. P., 2008, Circulation, 117, 2395
Lagerkvist C.-I., Fitzsimmons A., Magnusson P., Williams I., 1993, Monthly Notices of
the Royal Astronomical Society, 260, 679
Lee T.-H., Ullah A., Wang R., 2020, Macroeconomic forecasting in the era of big data:
Theory and practice, pp 389–429
Lin H., Yoshida F., Chen Y., Ip W., Chang C., 2015, Icarus, 254, 202
Lin C.-H., Ip W.-H., Lin Z.-Y., Cheng Y.-C., Lin H.-W., Chang C.-K., 2018, Planetary
and Space Science, 152, 116
Marchi S., Magrin S., Nesvorn`y D., Paolicchi P., Lazzarin M., 2006, Monthly Notices of
the Royal Astronomical Society: Letters, 368, L39
Menard S., 2011, Social Forces, 89, 1409
Morbidelli A., Vokrouhlick`y D., 2003, Icarus, 163, 120
Morota T., et al., 2020, Science, 368, 654
Myles A. J., Feudale R. N., Liu Y., Woody N. A., Brown S. D., 2004, Journal of Chemometrics: A Journal of the Chemometrics Society, 18, 275
Nesvorn´y D., Bottke W. F., Vokrouhlick´y D., Chapman C. R., Rafkin S., 2010, Icarus,
209, 510
Noble W. S., 2006, Nature biotechnology, 24, 1565
Noguchi T., et al., 2011, Science, 333, 1121
Noguchi T., et al., 2014, Meteoritics & Planetary Science, 49, 188
BIBLIOGRAPHY 93
Polydoros A. S., Nalpantidis L., 2017, Journal of Intelligent & Robotic Systems, 86, 153
Qi X., Wang T., Liu J., 2017, in 2017 Second International Conference on Mechanical,
Control and Computer Engineering (ICMCCE). pp 151–155
Quinlan J. R., 1996, ACM Computing Surveys (CSUR), 28, 71
Richardson D. C., Bottke Jr W. F., Love S. G., 1998, Icarus, 134, 47
Roig F., Gil-Hutton R., 2006, Icarus, 183, 411
Scotti J., Melosh H., 1993, Nature, 365, 733
Sharma I., Jenkins J. T., Burns J. A., 2006, Icarus, 183, 312
Shmilovici A., 2010, Data mining and knowledge discovery handbook, pp 231–247
Smola A. J., Sch¨olkopf B., 2004, Statistics and computing, 14, 199
Sridhar S., Tremaine S., 1992, Icarus, 95, 86
Staelin C., 2003, Hewlett-Packard Company, Tech. Rep. HPL-2002-354R1, 1
Stuart J. S., Binzel R. P., 2004, Icarus, 170, 295
Sugita S., et al., 2019, Science, 364, eaaw0422
Tholen D. J., 1984, Asteroid taxonomy from cluster analysis of photometry. The University
of Arizona
Vernazza P., Binzel R. P., Rossi A., Fulchignoni M., Birlan M., 2009, Nature, 458, 993
Vernazza P., et al., 2017, The Astronomical Journal, 153, 72
Vokrouhlick`y D., Milani A., Chesley S., 2000, Icarus, 148, 118
Wythoff B. J., 1993, Chemometrics and Intelligent Laboratory Systems, 18, 115
Xu C., Lu C., Liang X., Gao J., Zheng W., Wang T., Yan S., 2015, IEEE Transactions
on Circuits and Systems for Video Technology, 26, 2273
94 BIBLIOGRAPHY
Yada T., et al., 2021
Yarats D., Zhang A., Kostrikov I., Amos B., Pineau J., Fergus R., 2021, in Proceedings
of the AAAI Conference on Artificial Intelligence. pp 10674–10681
Zeller E. J., Ronca L. B., 1967, Icarus, 7, 372
Zou X., Hu Y., Tian Z., Shen K., 2019, in 2019 IEEE 7th international conference on
computer science and network technology (ICCSNT). pp 135–139