| 研究生: |
簡錫雲 Shyi-Yun Jean |
|---|---|
| 論文名稱: |
應用隅撐抗彎構架石化廠房耐震行為研究 Apply The Knee Bracing Moment Resisting Frame to Petrochemical-oil Plant for Seismic Resistant Behaviore |
| 指導教授: |
許協隆
Hsieh-Lung Hsu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 開放式結構 、隅撐 、隅撐抗彎構架系統 |
| 外文關鍵詞: | open frame, knee bracing, knee bracing moment re |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因此吾人尋求將高韌性抗彎構架(SMRF)加設隅撐(Knee Bracing),簡稱隅撐抗彎構架 (Knee Bracing Moment Resistance Frame),並以KBRF縮寫來表示之。分別透過相對側向勁度、強度、韌性及經濟性等方面分析,再配合工程實例進行分析設計,藉以比較隅撐抗彎構架相對於抗彎構架之耐震行為及經濟性。
首先針對相對側向勁度分析結果,發現隅撐抗彎構架可藉著調整隅撐距柱中心線距離eb,來提高構架勁度,且為考慮整體構架實用性及安全性,建議隅撐斜率以1:1及eb構架寬度)為宜, 並可提高側向勁度1.3~1.8倍。
其次關於構架韌性及強度分析初步結論,當隅撐位置介於 時,隅撐抗彎構架強度優於抗彎構架,其隅撐抗彎構架與抗彎構架為之初始降伏強度比為1.25~1.75,極限強度比為1.2~1.65倍。至於韌性方面,當 時, 隅撐抗彎構架稍小於抗彎構架,但 時,則隅撐抗彎構架優於抗彎構架,唯建議當構架樓層高度與寬度比 及 配置時,建議外柱與樑塑性彎矩強度比 需大於1.5,俾利若構架進入線性行為時,塑性鉸逐步發生於每一樓層的樑與隅撐交點之樑上,減少發生於樓層柱與隅撐交點之柱上,引致破壞機構過早產生而減低其韌性值。
在經濟性分析方面,採用實例構架狀況進行評估,其結果隅撐抗彎構架比抗彎構架可節省鋼料9%~11%,視構架規模而定。
綜合上述,只要正確佈置隅撐於抗彎構架上及注意柱樑塑性彎矩強度比值,則隅撐抗彎構架之耐震能力優於抗彎構架,且其塑性鉸產生的位置可遠離樑端,避免樑柱抗彎接頭因塑性轉角能力不足而導致接頭脆性破壞,為隅撐應用於抗彎構架之重要效益。
To avoid the above-mentioned disadvantage of SMRF, we investigated a rigid frame system with knee braces. This system is called Knee Bracing Moment Resisting Frame and abbreviated as KBRF. Through this research, we analyzed the following items of SMRF and KBRF.
1. Lateral stiffness of frame
2. Ductility of structural system
3. Strength of structural system
4. Cost savings
5. A really engineering sample
By comparing the results of the five items, we will know KBRF is ductile and economical structure for petrochemical-oil plants, and the design criteria will be provided simultaneously.
By analyzing the lateral stiffness of KBRF, we found that the lateral stiffness would be raised by adjusting the distance from the intersection of beam and knee brace to column center (eb). For safety and operation reasons, a 1:1 slope and (w=span) of knee braces are recommended. According to the analysis result, the lateral stiffness of KBRF is about 1.3~1.8 times SMRF.
For ductility and strength of structural system, we also have some conclusion below.
1. When knee brace is located with , initial strength of KBRF will be raised about 1.25~1.75 times SMRF. And ultimate strength of KBRF will be raised about 1.20~1.65 times SMRF
2. When knee brace is located with , ductility of KBRF is slightly less than SMRF. When knee brace is located with , ductility of KBRF is larger than SMRF. However, when the floor height (h1) to span width (w) ratio of frame is more than 1.0 ( ) and , the exterior column-beam moment ratio should be more than 1.5 in order to prevent the early formation of plastic hinge in exterior column. As a result, most plastic hinge of KBRF will be formed on beam of the intersection of beam and knee brace.
About the costs of both systems, by really engineering example, we found that the total steel weight of KBRF is 9%~11% less than the weight of SMRF. So we can say that the KBRF is more economical than SMRF.
In a word, we can design a ductile KBRF to sustain seismic load by properly locating the knee braces and adjusting the exterior column-beam moment ratio. On the other hand, most plastic hinges of KBRF are far away from beam-to-column joints. Therefore the moment connection failure as Northridge earthquake in the United States can be avoided. This is one of the important results of this research.
參考文獻
1. Krawinkler, H.,“Shear in Beam-Column Joint in Seismic Design of Steel Frames”,Engineering Journal,AISC,Vol.15,No.3,pp.82-91,1978.
2. Tasi, K.C. and Popov, E.P.,“Seismic Panel Zone on Elastic Story Drift in Steel Moment Resistance Frames ”, Journal of Structural Engineering,ASCE,Vol.116,No.12, Dec.1990。
3. Bungale S. Taranath., “Structural Analysis & Design of Tall Building”, McGraw-Hill 100 years,1988。
4. American Institute of Steel Construction, Inc. (AISC), “Seismic Provisions for Structural Steel Building”, April 15,1997。
5. Michel Bruneau,Chia-Ming Uang and Andrew Whittaker, “Ductile Design of Steel Structures”, McGraw-Hill Company,1998。
6. American Institute of Steel Construction, Inc. (AISC), “Manual of Steel Construction ,Allowable Stress Design”, Ninth Edition,1989。
7. Task Committee on Seismic Evaluation and Design of Petrochemical Facilities of the Petrochemical Committee of the Energy Division of the America Society of Civil Engineers(ASCE), “ Guidelines for Seismic Evaluation and Design of Petrochemical Facilities”, 1997。
8. Beedle, L. S. “Plastic Design of Steel Frame”, John Wiley,New York,1958。
9. ASCE 7-88 and 7-92, “Minimum Design Loads for Buildings and Other Structures”, American National Standards Institute, Inc., New York,NY,1988 and 1992。
10.Krawinkler, H., Bertero, V.V. and Popv, E.P., “Hysteresis Behavior of Steel Columns”, Report No. UCB/EERC-75/11, Earthquake Engineering Research Center, University of California, Berkeley, CA,1975 。
11. American Institute of Steel Construction, Inc. (AISC), “Manual of Steel Construction ,Loading Rsistance Factor Design”, First Edition,1989。
12.Daryl L. Logan “A First Course in the Finite Element Method Using Algor” PWS Publishing Company,1997
13.Orbison, J.G. McGuire, W. and Abel, J.F., “Yield Surface Aplication in Nonlinear Steel Frame Analysis”, Comp. Meth. In Appl. Mech. Engineering, Vol.33, pp.557-573,1982
14.Duan, L.,and Chen, W.F., “Design Interaction Equation for Steel Beam-Columns”, J. of Structural Engineering, ASCE, Vol.115, No.5, pp.1225-1241, May,1989
15. Structural Engineers Association of California “Performance Based Seismic Engineering of Building” April 3,1995
16.內政部, “鋼構造建築物鋼結構設計技術規範,鋼結構容許應力設計法規範及解說”, 民國88年1月。
17.內政部, “建築物耐震設計規範及解說”, 民國86年6月。
18.蔡克銓、蔡益超、邱昌平, “鋼結構韌性設計規範研究”, 結構工程,第七卷第三期,民國81年9月。
19.翁正強, “鋼骨特殊抗彎構架(SMRF)行為原理與耐震設計”,結構工程,第九卷第三期,民國83年9月。
20.翁正強, “高層鋼骨建築偏心斜撐構架(EBF)耐震設計:行為與原理”,結構工程,第十一卷第二期,民國85年6月。
21.蔡益超, “建築物韌性與耐震”, 結構工程,第八卷第三期,民國82年9月。
22.陳生金、陳舜田、葉禎輝、周作隆, “強裂地震下鋼骨樑柱接頭之破壞及高韌性接頭之開發”, 結構工程,第十一卷第四期,民國85年12月。
23.王寶璽、葉志浩、黃世霖,“剛架塑性分析方法比較(上)(下)”,結構工程,第十一卷第三、四期,民國85年9月、12月。
24.廖源輔, “考慮接頭非線性之多層鋼構架歷時動力分析之研究”, 台灣大學土木工程學系碩士論文,陳清泉教授指導,民國77年6月。
25.吳明興, “含偏心斜撐構架之非線性分析及韌性行為研究”,台灣大 學土木工程學系碩士論文,邱昌平教授指導,民國81年6月。
26.葉禎輝, “高性能鋼骨抗彎構架系統之開發-樑柱接頭之研究”,國立台灣工業技術學院營建工程技術研究所碩士論文, 陳生金教授指導,民國82年6月。
27.陳嘉有, “韌性鋼骨樑柱接頭行為研究”, 台灣大學土木工程學系碩士論文,蔡克銓教授指導,民國84年6月。
28. 內政部, “建築技術規則”, 民國88年1月。