| 研究生: |
湯凱羽 Tang Kai-Yu |
|---|---|
| 論文名稱: |
以球狀蒙地卡羅模擬法評價結構型商品-以FCN為例 Valuing Structured Products Using Spherical Monte Carlo Simulation: The Case of FCN |
| 指導教授: | 黃泓人 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融學系 Department of Finance |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 變異數縮減方法 、球狀蒙地卡羅模擬法 、結構型商品 |
| 外文關鍵詞: | Variance reduction methods, Spherical Monte Carlo simulation, Structured products |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究延伸 Teng 與 Zhou(2019)的研究,將球狀蒙地卡羅模擬法的應用範疇,從匯率連動選擇權擴展至同時涵蓋多資產、路徑相關與非路徑相關特性的結構型商品。除了使用球狀蒙地卡羅模擬法外,亦分別採用反向變數法、系統抽樣法及標準蒙地卡羅法對具自動提前出場機制之 FCN 商品進行評價。數值結果顯示,球狀蒙地卡羅雖能有效降低變異數,但在觀察日較多的情況下,必須反覆進行亂數抽樣而破壞預選單位向量集合的變異數縮減效果,導致其效率優勢不如預期;反之,若商品結構相對簡單、觀察次數僅有一天,球狀蒙地卡羅模擬法較能發揮其理論效果。
This study extends the research of Teng and Zhou (2019) by broadening the application of the spherical Monte Carlo simulation method from Quanto options to structured products featuring multiple underlying assets with both path‑dependent and path‑independent payoffs. In addition to the spherical Monte Carlo approach, we also employ antithetic variates, systematic sampling, and standard Monte Carlo methods to value a Fixed Coupon Note (FCN) .Our numerical results indicate that, although the spherical Monte Carlo method can achieve significant variance reduction, its efficiency diminishes when the number of observation dates is large—because repeated random sampling disrupts the predetermined set of unit vectors and undermines variance reduction. Conversely, when there is only a single observation date, the spherical Monte Carlo method can better demonstrate its theoretical efficiency.
[1] Eduardo S. Schwartz (1977) , The valuation of warrants: Implementing a new approach
[2] Cox, J.C., Ross, S.A. and Rubinstein, M. (1979) Option Pricing: A Simplified Approach. Journal of Financial Economics, 7, 229-263.
[3] Boyle, P.P. (1977) Options: A Monte Carlo Approach. Journal of Financial Economics, 4, 323-338.
[4] Hull, J., & White, A. (1993). One-factor interest-rate models and the valuation of interest-rate derivative securities. Journal of Financial and Quantitative Analysis, 28(2), 235-254.
[5] Longstaff, F. and Schwartz, E. (2001) Valuing American Options by Simulation: A Simple Least-Squares Approach. The Review of Financial Studies, 14, 113-147.
[6] Glasserman, P. (2003) Monte Carlo Methods in Financial Engineering. In: Stochastic Modelling and Applied Probability, Springer-Verlag, New York.
[7] Ross, S.M. (2013) Simulation. Fifth Edition, Elsevier, New York.
[8] Neddermeyer, J. C. (2010). Non-parametric partial importance sampling for financial derivative pricing. Quantitative Finance, 11(8), 1193–1206. https://doi.org/10.1080/14697680903496485
[9] Duan, J.-C. and J. Simonato (1998), “Empirical Martingale Simulation for Asset Prices,” Management Science, 44, 1218-1233.
[10] Duan, J.-C., G. Gauthier and J. Simonato (2001), “Asymptotic Distribution of the EMS Option Price Estimator,” Management Science, 47, 1122-1132.
[11] Stentoft, L. (2005), “Pricing American Options When the Underlying Asset Follows
GARCH Processes,” Journal of Empirical Finance, 12, 576-611.
[12] Duan, J.-C., E. Dudley, G. Gauthier and J. Simonato (1999), “Pricing Discretely Monitored Barrier Options by a Markov Chain,” Journal of Derivatives, 10(4), 9-31
[13] Park, J. J. and G. H. Choe (2016), “A New Variance Reduction Method for Option Pricing Based on Sampling the Vertices of a Simplex,” Quantitative Finance, 16, 1165-1173.
[14] Teng, H., M. Kang and C. Fuh (2015), “On Spherical Monte Carlo Simulations for Multivariate Normal Probabilities,” Advances in Applied Probability, 47(3), 817-836.
[15] Hajivassiliou, V., D. McFadden and P. Ruud (1996), “Simulation of Multivariate Normal Rectangle Probabilities and Their Derivatives: Theoretical and Computational Results,” Journal of Econometrics, 72, 85-134.
[16] Monahan, J. and A. Genz (1997), “Spherical-Radial Integration Rules for Bayesian Computation,” Journal of the American Statistical Association, 92, 664-674.
[17] Glasserman, P., P. Heidelberger and P. Shahabuddin (2000), “Variance Reduction Techniques for Estimating Value-at-Risk,” Management Science, 46, 1349- 1364.
[18] Glasserman, P., P. Heidelberger and P. Shahabuddin (2002), “Portfolio Value-at-Risk with Heavy-Tailed Risk Factors,” Mathematical Finance, 12, 239-269.
[19] Teng, H. (2017), “A Spherical Monte Carlo Approach for Calculating Value-at- Risk and Expected Shortfall in Financial Risk Management,” In V. Chan (Ed.), Proceedings of the 2017 Winter Simulation Conference, (pp. 469-480), Piscataway, NJ: Institute of Electrical and Electronics Engineers.
[20] Huei-Wen Teng and Xiang-An Zhao. On pricing quanto options with spherical Monte Carlo simulation. Journal of Futures and Options, 14(2):25–82, August 2021. (TSSCI)
[21] Stewart, G. W. (1980), “The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators,” SIAM Journal on Numerical Analysis, 17, 403-409.
[22] Diaconis, P. and M. Shahshahani (1987), “The Subgroup Algorithm for Generating Uniform Random Variables,” Probability in the Engineering and Informational Sciences, 1(1), 15-32.
[23] Anderson, T. W., I. Olkin and L. G. Underhill (1987), “Generation of Random Orthogonal Matrices,” SIAM Journal on Scientific and Statistical Computing, 8, 625-629.
[24] McNeil, A. J., R. Frey and P. Embrechts (2005), Quantitative Risk Management: Concepts, Techniques, and Tools, Princeton, NJ: Princeton University Press.