| 研究生: |
王忠豪 Chung-hao Wang |
|---|---|
| 論文名稱: |
選擇權隱含波動率與GARCH模型對於波動度的解釋及預測能力探討(以外匯市場為例) |
| 指導教授: |
高櫻芬
Yin-feng Gau |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融學系在職專班 Executive Master of Finance |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 隱含波動率 、GARCH模型 |
| 外文關鍵詞: | Implied Volatility, GARCH Model |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以EURUSD、USDJPY 、 與AUDUSD為研究對象,探討外匯選擇權隱含波動率對於即期外匯市場波動度之預測能力。本研究以Garman and Klass (1980)波動度估計方法做為即期外匯市場波動度之替代變數,進而比較GARCH模型及implied volatility對波動度的預測能力。研究結果發現一個禮拜、一個月期implied volatility的預測能力皆優於GARCH模型。另外,不論在模型樣本內及樣本外之預測能力表現上,一個禮拜、一個月implied volatility的預測能力也優於GARCH模型。
This thesis uses EURUSD, USDJPY, and AUDUSD to study the forecasting ability of currency option implied volatility. Using the Garman and Klass (1980) estimator as the proxy of spot market volatility, we compare the fitting performance of implied volatility and GARCH in a regression framework. The results show that 1-week and 1-month implied volatilities fit better than the volatility estimated from the GARCH model. Moreover, 1-week and 1-month implied volatilities outperform GARCH forecasts in both in-sample and out-sample forecasting evaluation.
中文文獻:
1.呂惠琪 (2009), 選擇權內含資訊對股價指數波動率預測之績效表現-以臺指選擇權為例 ,國立高雄應用科技大學。
2.何宗武 (2011),E-views高手-財經計量應用手冊,鼎茂圖書出版公司。
3.吳建民 (2007),台指選擇權之市場指標實證分析,國立政治大學。
4.許凱甯 (2006) ,隱含波動率與歷史波動率間之領先落後關係及相關之交易策略─以台股指數及其選擇權為例 ,國立成功大學。
5.莊益源、李登賀、邱嬿珍 (2008), 納入開收盤、最高低價的風險值模型 ~國立台北大學經濟學系。
6.莊益源、張鐘霖、王祝三 (2003), 波動率模型預測能力的比較-以臺指選擇權為例 ,台灣金融財務季刊第四輯第二期(92年6月) ,41-63 。
7.黃巧婷 (2001) ,GARCH選擇權評價模型----理論與應用,國立臺灣大學。
8.陳彥錞 (2006),匯率選擇權隱含波動率與即期匯率之非線性關係 ,淡江大學。
9.楊奕農 (2009),時間序列分析-經濟與財務上之應用(二版) ,雙葉書廊有限公司。
英文文獻:
1.Bollerslev, T.,(1986),“Generalized Autoregressive Conditional Heteroskedasticity,”Journal of Econometrics 31, 307-327.
2.Duan, J., (1995),“The GARCH Option Pricing Model,” Mathematical Finance, 5, 13-32.
3.Duan, J., (1996),“Cracking the Smile,”Risk,9,55-59.
4.Engle, R. F. 1982.“Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation,” Econometrica, 50, 987-1007.
5.Fleming, J.,B.Ostdiek and R.E. Whaley (1995),“Predicting Stock Market Volatility: A New Measure.”Journal of Futures Markets, 15, 265-302
6.Garman, M. and M. Klass (1980),“On the Estimation of Security Price Volatility from Historical Data,” Journal of Business, 53, 67-78.
7.Harvey, C. R., and Whaley, R. E.,(1992).Market volatility prediction and the efficiency of the S&P 100 index option market. Journal of Financial Economics,31,pp.43-73
8.Hull, J. and A. White (1987),“The Pricing of Options on Assets with Stochastic Volatility,” Journal of Finance, 42, 281-300.
9.James A. Hyerczyk (2001),”Volatility Matters:Better Position Sizing”, Futures, May, 34-36.
10.Parkinson, M. (1980),“The Extreme Value Method for Estimating the Variance of the Rate of Return,” Journal of Business, 53, 61-65.
11.Ritchken, P., and R. Trevor(1999),“Pricing Options under Generalized GARCH and Stochastic Volatility Process,”Journal of Finance, 54, 377-402.
12.Rogers, L., S. Satchell and Y. Yoon (1994),“Estimating the Volatility of Stock Prices: A Comparison of Methods That Use High and Low Prices,”Applied Financial Economics, 4, 241-247.
13.Yang,D.and Q.Zhang(2000),“Drift-Independent Volatility Estimation Based on High, Low, Open, and Close Prices,” Journal of Business, 73, 477-491.