| 研究生: |
陳品頤 Pin-Yi Chen |
|---|---|
| 論文名稱: |
結合變異數縮減技術於隨機網路 Combination of Variance Reduction Technique on Stochastic Edge Networks |
| 指導教授: | 葉英傑 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業管理研究所 Graduate Institute of Industrial Management |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 蒙地卡羅模擬 、變異數縮減技術 、重要性抽樣 、交叉熵法 、拉丁超立方抽樣 、對偶變量法 |
| 相關次數: | 點閱:26 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於基本的蒙特卡羅方法(Monte Carlo Method)存在明顯的缺點包括抽樣效率相對較弱、需要大量樣本,因此有了變異數縮減技術(Variance Reduction Technique),來改善上述缺點,而抽樣方法會影響到抽出樣本是否精準,所以抽樣方法也算是變異數縮減技術的一環;變異數縮減法包含了對偶變量(Antithetic Random Variables)、控制變量技術(Control variates)、分層抽樣(Stratification)、重要性抽樣(Importance Sampling)、拉丁超立方抽樣(Latin Hypercube Sampling)以及隨機亂數法(Common random numbers )。
交叉熵(Cross-entropy)策略是一種通用方法應用於組結合多極值優化以及罕見事件模擬(rare event )。 在本文中,交叉熵策略被應用於在重要性抽樣中尋找最佳的重要性機率密度函數(IPDF),然後通過拉丁超立方抽樣(LHS)對獲得的IPDF進行抽樣。最後,使用對偶變量法(ARV)技術可以再進一步降低測試函數的變異數。本篇使用的例子進行模擬結果說明,基於本篇交叉熵策略的新型組合抽樣方法(CSMCES)能夠在一定的精確度下有效地減小樣本量,提高效率。
Due to the apparent drawbacks of Monte Carlo method including comparatively lower sampling efficiency, requiring a large number of samples. Variance Reduction Technique used to improve those drawbacks. The method of sampling will affect the precision, so sampling methods also a part of variance reduction technique. Variance Reduction Technique includes Antithetic random variables(ARV), Control variates technique(CV), Stratification, Importance sampling(IS), Latin hypercube sampling (LHS)and Common random numbers(CRN).
Cross-entropy(CE) strategy provides a general, simple and efficient method for solving such problems like the quadratic assignment problem and the rare event-simulation. Before we are sampling, CE strategy is use to choose an importance probability density function(IPDF). And then use LHS to sampling the IPDF we got. After that, used ARV technique can be further to reduce the variance of test function. The simulation results of stochastic edge networks examples show that this combined sampling method with CE strategy (CSMCES) can enhance efficiency under certain level of precision and effectively reduce sample size.
Aionuevo, R. and B. L. Nelson., “Automated estimation and variance reduction via control variates for infinite-horizon simulations.”, Computers & Operations Research. 15, 447-456, 1988.
Bauer, K. W., “Control Variate Selection for Multiresponse Simulation.”, Ph.D. Dissertation. School of Industrial Engineering, Purdue University, W. Lafayette, Ind, 1987.
De Boer, Pieter-Tjerk, Kroese, Dirk P., Mannor, Shie, Rubinstein, Reuven Y., “A tutorial on the Cross-Entropy method.”, Annals of Operations Research . 134 (1). pp. 19–67, 2003.
Eglajs, V., Audze P., “New approach to the design of multifactor experiments.”, Problems of Dynamics and Strengths. 35 (Riga: Zinatne Publishing House). 104–107, 1977.
Glynn P. W. and D. L. Iglehart., “Importance sampling for stochastic simulations.”, Management Science., vol. 35, pp. 1367–1392, 1989.
Glynn, P. W. and W. Whitt. , “Indirect estimation via L = λW.”, Operations Research. 37, 82-103, 1989.
Hao Z.J, X.X Hu., “Error compensation method and rapid accuracy analysis for missile based on latin hypercube sampling.”, Ordnance Industry Automation, Vol.6, 23-25, 2009.
Kahn, H. “Random sampling (Monte Carlo) techniques in neutron attenuation problems—I,” Nucleonics, pp. 27–37, May 1950.
Kahn, H and A. W. Marshall, “Methods of reducing sample size in Monte Carlo computations” , J. Operations Research., pp. 263–278, 1953.
Kahn, H, “Use of different Monte Carlo sampling techniques.”, in Symposium. Monte Carlo Methods, H. A. Meyer, Ed. New York: Wiley, 1956.
Kroese, D.P., T. Taimre, Z.I. Botev., “Handbook of Monte Carlo Methods.”, John Wiley & Sons, 2011.
Lavenberg, S. S., T. L. Moller and C. H. Sauer., “Concomitant control variables applied to the regenerative simulation of queueing systems.”, Operations Research. 27, 134-160, 1979.
Lavenberg, S. S., and P. D. Welch., “A perspective on the use of control variables to increase the efficiency of Monte Carlo simulations.”, Management Science. 27, 322-335, 1981.
McKay, M.D., Beckman, R.J., Conover, W.J., “A comparison of three methods for selecting values of input variables in the analysis of output from a computer code.”, Technometrics . 21 (2): 239–245, May 1979.
Nelson, B. L. and B. W. Schmeiser., “Decomposition of some well-known reduction techniques,” J. Statistical Computation Simulation, vol. 23, pp. 183–209, 1986.
Nelson, B. L., “A perspective on variance reduction in dynamic simulation experiments. Common. Statist. B16, 385-426, 1987a.
Nelson, B. L., “On control variate estimators.”, Computers & Operations Research. 14, 218-225, 1987b.
Nelson, B. L. “Batch size effects on the efficiency of control variates in simulation.”, Eur. J. Operations Research. 43, 184-196, 1989.
Nozari, A., S. F. Arnold and C. D. Pegden., “Control variates for multipopulation simulation experiments.”, HIE Trans. 16, 159-169, 1984.
Glasserman, P., & Yao, D. D. "Some guidelines and guarantees for common random numbers.", Management Science. 38.6: 884-908, 1992.
Porta Nova., A. M. O., and J. R. Wilson., “Using control variates to estimate multiresponse simulation metamodels.”, Winter Simulation Conference Proceedings, 326-334, 1986.
Rubinstein, R. Y., “Optimization of computer simulation models with rare events.”, European Journal of Operations Research, 99, 89-112, 1997.
Rubinstein, R. Y., “The simulated entropy method for combinatorial and continuous optimization.”, Methodology and Computing in Applied Probability, 2, 127-190, 1999.
Rubinstein, R. Y., and R. Markus., “Efficiency of multivariate control variates in Monte Carlo simulation.”, Operations Research. 33, 661-677, 1985.
Saliby, Eduardo., “Descriptive sampling: an improvement over Latin hypercube sampling.”, Proceedings of the 29th conference on Winter simulation, IEEE Computer Society, 1997.
Smith, P. J., Shafi, M., & Gao, H. “Quick simulation: A review of importance sampling techniques in communications systems.”, IEEE Journal on Selected Areas in Communications, 15(4), 597-613,1997.
Tew, J. D., and J. R. Wilson., “Estimating simulation metamodels using integrated variance reduction techniques.”, Technical Report SMS 89-16, School of Industrial Engineering, Purdue University, West Lafayette, Ind, 1989.
Venkatraman, S., and J. R. Wilson., “The efficiency of control variates in multiresponse simulation.”, Operations Research. Lett. 5, 37-42, 1986.
Wang B.C, Y.H Wei, Y.H Sun., “A comparison of different importance sampling methods in controlling variance.”, Statistics and Decision, Vol.9, 78-81, 2015.
Wilson J. R., “Variance reduction techniques for digital simulation.”, Am. J. Math. Manage. Sci., vol. 4, no. 3, 4, pp. 277–312, 1984.
Wilson, J. R., and A. A. B. Pritsker., “Variance reduction in queueing simulation using generalized concomitant variables.”, J. Statistical Computation and Simulation,19, 129-153, 1984a
Wilson, J. R., and A. A. B. Pritsker., “Experimental evaluation of variance reduction techniques for queueing simulation using generalized concomitant variables.”, Management Science. 30, 1459-1472, 1984b.
Xie, X., Li, W., Lu, L., & Yang, M. “A new combined sampling method based on variance minimization strategy.”, In Control and Decision Conference (CCDC), Chinese ,pp. 1841-1844, IEEE, 2016.
Zhang W.F, Y.B Che, Y.S Liu., “Improved Latin hypercube sampling method for reliability evaluation of power systems.”, Automation of Electric Power Systems, Vol.4, 52-57, 2015.