| 研究生: |
曾文妮 Wen-Ni Tseng |
|---|---|
| 論文名稱: |
土壤無機相對揮發性有機污染物吸∕脫附行為之影響 The effect of soil mineral structure on the adsorption/desorption of volatile organic compounds |
| 指導教授: |
李俊福
Jiunn-Fwu Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 蒙特石結構 、揮發性有機化合物 、等溫吸∕脫附曲線 、遲滯現象 |
| 外文關鍵詞: | montmorillnite, porous structure, adsorption/desorption isotherm |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
實驗係透過量測BET表面積、孔洞體積、孔洞大小、孔徑分布、晶格間距及推測孔洞連結,並配合電子顯微鏡之表面影像而得土樣基本結構參數;再使用Cahn D-200電動天平並控制溫度,測量苯及正己烷在鈣─蒙特石與鈦─蒙特石上之等溫吸∕脫附曲線。
結果顯示,鈣─蒙特石經由過渡金屬鈦離子取代後,表面積、孔洞體積及平均孔徑均增加、孔徑分布趨向不均勻化、晶格C層間距改變且氣態吸∕脫附曲線不具遲滯迴圈,顯示了蒙特石的結構發生改變,也使得孔洞連結度變得更佳。鈦─蒙特石提供較多吸附位置,又無立體阻礙,所以在達單層飽和吸附量時,其吸附平衡所需的時間均較鈣─蒙特石為快,單層吸附量也較高,且等溫吸∕脫附曲線沒有迴圈,無遲滯現象。實驗所得之吸附熱則受到吸附劑的孔洞及氣體分子在孔洞內之排列影響,對於孔徑體積較小的鈣─蒙特石,其吸附熱須考量吸附劑與吸附質間的作用以及吸附分子間之作用力。
After exchanged with metal cation, the porous structure of the mineral samples was changed. These changes were explored by quantifying the BET surface area, total pore volume, micropore volume, pore size distribution, surface fractal dimension (calculated from N2 adsorption/desorption isotherms), c-spacing (by XRD) and surface image (by SEM) of mineral phase. The results demonstrate that Ti-montmorillnite has higher surface area, extensive pore size distribution, and better pore connection.
The influences of temperature and soil properties were also investigated. A gravimetric adsorption apparatus was developed and used to generate adsorption/desorption isotherms of benzene and hexane on two dry soil samples at 288 and 298 K. Isosteric heats of adsorption were calculated and heat curves were established. Equilibrium isotherms were all Type II, characterizing vapor condensation to form multilayers. The sorption capacity of soils is positively correlated with specific surface area, pore size distribution and pore connection. Nevertheless, Ti-montmorillnite didn’t reveal hysteresis loop, which might be attributed to better pore size distribution and pore connection. Isosteric heats of adsorption on Ca-montmorillnite were influenced by the reaction between adsorbent and adsorbate as well as among adsorbate molecules.
The results of this study are to further understanding of soil properties, as a basis for desorption predictions. Findings, apply not only to environment applications but also to theoretical development.
(1)Hileman, B., “Research targets hazardous waste,” Chem. Eng. News, 77, 24-25, 1999.
(2)Batterman, S., Kulshrestha, A., and Chang, H., “Hydrocarbon vapor transport in low moisture soils,” Environ. Sci. Technol., 29, 171-180, 1995.
(3)Chiou, C. T., Porter, P. E., and Schmedding, D. W., “A physical concept of soil-water equilibria for nonionic organic compounds,” Science, 206, 831-832, 1979.
(4)Weissmahr, K. W., Haderlein, S. B., and Schwarzenbach, R. P., “In situ spectroscopic investigations of adsorption mechanism of nitro aromatic compounds at clay minerals,” Environ. Sci. Technol., 31, 240-247, 1997.
(5)Doner, H. E., and Mortland, M. M., “Benzene complexes with Cu (II) montmorillonite,” Science, 166, 1406-1407, 1969.
(6)Mader, B. T., Goss, K. U., and Eisenreich, S. J., “Sorption of nonionic hydrophobic organic chemicals to mineral surface,” Environ. Sci. Technol., 31, 1079-1086, 1997.
(7)Weidenhaupt, A., Arnold, C., Muller, S. R., Haderlein, S. B., and Schwarzenbach, R. P., “Sorption of organic biocides to mineral surface,” Environ. Sci. Technol., 31, 2603-2609, 1997.
(8)王一雄、陳尊賢、李達源,“土壤污染學”,國立空中大學,台北,民國八十六年。 【ISBN: 957-661-091-5】
(9)Cseri, T., Békássy, S., Figueras, F., and Rizner, S., “Benzylation of aromatics on ion-exchanged clays,” J. Mol. Catal. A-Chem., 98, 101-107, 1995.
(10)Maes, N., Heylen, I., Cool, P., and Vansant, E. F., “The relation between the synthesis of pillared clays and their resulting porosity,” Appl. Clay Sci., 12, 43-60, 1997.
(11)Goss, K. U., “Effects of temperature and relation humidity on the sorption of organic vapors on clay minerals,” Environ. Sci. Technol., 27, 2127-2132, 1993.
(12)Ruiz, J., Bilbao, R., and Murillo, M. B., “Adsorption of different VOC onto soil minerals from gas phase: influence of mineral, type of VOC, and air humidity,” Environ. Sci. Technol., 32, 1079-1084, 1998.
(13)Goss, K. U., and Eisenreich, S. J., “Adsorption of VOCs from the gas phase to different minerals and a mineral mixture,” Environ. Sci. Technol., 30, 2135-2142, 1996.
(14)Lee, J. F., Lee, C. K., and Juang, L. C., “Size effects of exchange cation on the pore structure and surface fractality of montmorillonite,” J. Colloid Interf. Sci., 217, 172-176, 1999.
(15)Goss, K. U., “Effects of temperature and relation humidity on the sorption of organic vapors on quartz sand,” Environ. Sci. Technol., 26, 2287-2294, 1992.
(16)Chiou, C. T., and Shoup, T. D., “Soil sorption of organic vapors and effects of humidity on sorptive mechanism and capacity,” Environ. Sci. Technol., 19, 1196-1200, 1985.
(17)Goss, K. U., and Eisenreich, S. J., “Sorption of volatile organic compounds to particles from a combustion source at different temperatures and relation humidity,” Environ. Sci. Technol., 31, 2827-2832, 1997.
(18)Steinberg, S. M., Schmeltzer, J. S., and Kreamer, D. K., “Sorption of benzene and trichloroethylene on a desert soil: Effects of moisture and organic matter,” Chemosphere, 33, 961-980, 1996.
(19)Ong, S. K., and Lion, L. W., “Effects of soil properties and moisture on the sorption of trichloroethylene vapor,” Water Res., 26, 287-2294, 1992.
(20)Jury, W. A., Spencer, W. F., and Farmer, W. J., “Behavior assessment model for trace organic in soil, 1. Model description,” J. Environ. Qual., 12, 558-564, 1983.
(21)Chiou, C. T., Porter, P. E., and Schmedding, D. D. W., “Partition equilibrium of nonionic organic compounds between soil organic matter and water,” Environ. Sci. Technol., 17, 227-231, 1983.
(22)Chiou, C. T., Shoup, T. D., and Porter, P. E., “Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solution,” Org. Geochem., 8, 9-14, 1985.
(23)Chiou, C. T., Kile, D. E., and Malcolm, R. L., “Sorption of vapors of some organic liquids on soil humic acid and its relation to partition of organic compounds in soil organic matter,” Environ. Sci. Technol., 22, 298-303, 1988.
(24)Ong, S. K., and Lion, L. W., “Mechanisms for trichloroethylene vapor sorption onto soil minerals,” J. Environ. Qual., 20, 180-188, 1991.
(25)Ong, S. K., and Lion, L. W., “Trichloroethylene vapor sorption onto soil minerals,” Soil Sci. Soc. Am. J., 55, 1559-1568, 1991.
(26)Schnitzer, M., and Kodama, H., “Interactions between organic and inorganic components in particle-size fractions separated from four soils,” Soil. Sci. Soc. Am. J., 56, 1099-1105, 1992.
(27)Tate III, R. L., “Soil organic matter,” John Wiley & Sons, Inc., New York, 1987.
(28)Chiou, C. T., Lee, J. F., and Boyd, S.A., “The surface area of soil organic matter," Environ. Sci. Technol., 24, 1164-1166, 1990.
(29)Rutherford, D. W., and Chiou, C. T., “Effect of water saturation in soil organic matter on the partition of organic compounds,” Environ. Sci. Technol., 26, 965-970, 1992.
(30)Grathwohl, P., “Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: Implications on Koc correlations,” Environ. Sci. Technol., 24, 1687-1693, 1990.
(31)Weber, W. Jr., Mcginley, P. M., and Katz, L. E., “A distributed reactivity model for sorption by soils and sediments,” Environ. Sci. Technol., 26, 1955-1962, 1992.
(32)Dural, N. H., and Chen, C. H., “Analysis of vapor phase adsorption equilibrium of 1,1,1-trichloroethane on dry soils,” J. of Hazard. Mater., 53, 75-92, 1997.
(33)Thlbaud, C., Erkey, C., and Akgerman, A., “Investigation of adsorption equilibria of volatile organics on soil by frontal analysis chromatography,” Environ. Sci. Technol., 26, 1159-1164, 1992.
(34)Campagnolo, J. F., Akgerman, A., “A prediction method for gas-phase VOC Isotherms onto soils and soil constituents,” J. Hazard. Mater., 49, 231-245, 1996.
(35)Johnston C. T., Tipton, T., Trabus, S. L., Erickson, C., and Stone, D. A., “Vapor-phase sorption of p-xylene on Co- and Cu-exchanded Saz-1 montmorillonite,” Environ. Sci. Technol., 26, 382-390, 1992.
(36)Lin, T. F., “Diffusion and sorption of water vapor and benzene within a dry model soil organic matter,” Water Sci. Technol., 35, 131-138,1997.
(37)張美玲,“揮發性有機物氣體在土壤中之吸脫附動力”,博士論文,國立台灣大學環境工程研究所,台北,民國八十七年。
(38)倪雅惠,“揮發性有機物污染土壤復育工程中之吸附行為─各種土壤成份對吸附之貢獻”,碩士論文,國立台灣大學環境工程研究所,台北,民國八十七年。
(39)陳佩貞,“揮發性有機物於土壤中慢吸脫附行為之探討─不同黏土礦物的影響”,碩士論文,國立台灣大學環境工程研究所,台北,民國八十八年。
(40)Soma, Y., Soma, M., and Harada, I., “The reaction of aromatic molecules in the interlayer of transition-metal ion-exchanged montmorillonites studied by resonance Ramam spectroscopy,” J. Phys. Chem. A, 88, pp. 3034-3038, 1984.
(41)林百顯,“不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究”,碩士論文,國立中央大學環境工程研究所,中壢,民國八十九年。
(42)薛敬和、林敬二等人,“化學大辭典”,高力圖書有限公司,台北,民國八十二年。 【ISBN: 9575840887】
(43)Chiou, C. T., Rutherford, D. W., and Manes, M., “Sorption of N2 and EGME vapors on some soils, clays, and mineral oxides and determination of sample surface areas by use of sorption data,” Environ. Sci. Technol., 27, 1567-1574, 1993.
(44)Chiou, C. T., and Kile, D. E., “Effect of polar and nonpolar groups on the solubility of organic compounds in soil organic matter,” Environ. Sci. Technol., 28, 1139-1144, 1994.
(45)Brunauer, S. L., Deming, S., Deming, W. S., and Teller, E., “Adsorption of gases in multimolecular layers,” J. Am. Chem. Soc., 60, 309-319, 1938.
(46)Gregg, S. J., and Sing, K. S. W., “Adsorption, surface area and porosity,” Academic Press Inc., London, 1982. 【ISBN: 0123009561】
(47)Pignatello, J. J., and Xing, B., “Mehanisms of slow sorption of organic chemicals to natural particles,” Environ. Sci. Technol., 30, 1-11, 1996.
(48)Cornelissen, G., van Noort, P. C. M., Parsons, J. R., and Govers, H. A. J., “Temperature dependence of slow adsorption and desorption kinetics of organic compounds in sediments,” Environ. Sci. Technol., 31, 454-460, 1997.
(49)Rounds, S. A., Tiffany, B. A., and Pankow, J. F., “Description of gas/particle sorption kinetics with an intraparticle diffusion model: description experiments,” Environ. Sci. Technol., 27, 366-377, 1993.
(50)Adamson, A. W., and Gast, A. P., “Physical chemistry of surface,” 6th Ed., John Wiley & Sons, Inc., New York, 1997. 【ISBN: 0471148733】