跳到主要內容

簡易檢索 / 詳目顯示

研究生: 范堯中
Yao-chung Fan
論文名稱: 虛擬實境結合體感技術之肩關節復健系統之復健效果與運動分析研究
The Performance and Motion Analysis of Virtual Reality Combined With Motion-Sensing Technology in Shoulder Joint Rehabilitation System
指導教授: 葉士青
Shih-ching Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 83
中文關鍵詞: 虛擬實境冰凍肩復建體感運動分析
外文關鍵詞: Virtual Reality, Frozen Shoulder, Rehabilitation, Motion-Sensing, Motion Analysis
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 五十肩又稱冰凍肩,是臨床上常見的肩部疾病,一旦肩關節受傷則許多日常生活功能就會受到限制,但是由於傳統治療過程枯燥乏味,患者往往無法持續完成整個療程,因此影響復健的效果。隨著科技的進步發達,眾多新興科技,例如:虛擬實境技術、互動技術、遊戲技術..等,日漸純熟且普及,有許多的研究結合新式科技技術與醫療復建,進行新型復健系統的開發。
    本研究將針對冰凍肩患者的復健運動,包括屈曲、外展、內轉、外轉、環狀(繞圈) 等運動,結合虛擬實境技術及互動技術開發肩關節復健系統,模擬生活情境並設計以任務為導向的的訓練任務,同時也設計各式感知刺激(視覺、聽覺)以提升使用者沉浸度,並運用被動式力量反饋模式提供病患真實力量刺激,更設計一系列各式難易度之訓練任務,以適應不同損傷程度的病人。
    為了探討本系統的復健成效以及患者之科技接受度,並開發新型評估運動指標,本研究設計了臨床試驗並招募四十位五十肩患者參與實驗,在實驗中量測包括臨床評估、任務表現、運動軌跡歷程以及使用者問卷等資料。
    實驗結果顯示,本系統能夠有效地提升五十肩的復健成效,同時也成功地開發了具有評估功能之新型運動指標,使用者對於本系統有很高的科技接受度,願意持續使用本系痛進行復健。


    Frozen shoulder is a common clinical disease. If a shoulder is injured, many everyday functions will be limited. Because of boring traditional treatment, patients are often unable to continue to complete the entire course of treatment it affects the result of rehabilitation. With advanced technology, many new technologies, such as: virtual reality technology, interactive technology, games technology etc., increasingly skilled and popularity, there are many studies combined with modern technology and medical rehabilitation science and technology for the development of new rehabilitation system.
    This study will focus on patients’ frozen shoulder rehabilitation exercises, including flexion, abduction, internal rotation, external rotation, and circling sports combined with virtual reality technology and interactive technology development shoulder rehabilitation system.
    It simulates life situational and task-oriented design of the training mission, while also designed to stimulate all kinds of perception (vision, hearing) to enhance the user immerse degrees, and the use of passive force feedback mode provides patients with true strength exciting, and more
    kinds of difficulty choose of the training mission, to adapt to different degree of injury to the patient.
    In order to investigate the effectiveness of the system of
    rehabilitation and patient acceptance of the technology and the development of new assessment exercise index, this study was designed clinical trials and recruited forty patients with frozen shoulder participate in the experiment, measured in the experiment, including clinical assessment, task performance, sports track process and user questionnaires and other information.
    Experimental results show that the system can effectively enhance the effectiveness of frozen shoulder rehabilitation, but also successfully developed a new type of movement indicator assessment function, the user for this system has a high degree of technology acceptance, willing to continue to use this system for pain rehabilitation.

    目錄 iv 圖目錄 vi 表目錄 viii 第一章 緒論 1 1-1 研究動機 1 1-2 研究目的 2 1-3 研究大綱 3 第二章 相關理論與研究 5 2-1 虛擬實境於運動復健的發展與應用 5 2-2 動作擷取技術於運動復健的發展與應用 7 第三章 研究方法:系統設計 10 3-1 系統設計特點 11 3-2 運動模式設計 13 3-2-1 上臂延伸運動 13 3-2-2 肩肘運動 15 3-2-3 肩關節內外轉運動 17 3-3 任務難易度設計 19 3-4 遊戲任務與復健動作結合 19 第四章 研究方法:實驗設計 23 4-1 收案對象與收案標準 23 4-1-1 選擇標準細項 23 4-1-2 排除標準細項 23 4-2 實驗流程 23 4-3 評估方法 25 4-3-1 臨床評估 25 4-3-2 運動指標分析 25 4-3-3 復健表現 32 4-3-4 問卷調查 32 第五章 結果與討論 33 5-1 臨床評估結果與討論 33 5-2 運動指標分析與討論 35 5-2-1 上臂延伸運動指標分析與討論 35 5-2-2 肩肘運動指標分析與討論 43 5-2-3 肩關節內外轉運動指標分析與討論 48 5-3 復健表現分析與討論 52 5-4 問卷結果調查 55 5-5 臨床評估結果與復健表現及運動指標間關聯度分析 55 5-6復健表現與運動指標對臨床評估結果預測分析 61 第六章 結論與未來展望 64 第七章 參考文獻 65 第八章 附錄 69 附錄一 Constant-Murley score(CMS)評定 69 附錄二 復健紀錄回條 70 附錄三 復健互動組問卷 72

    參考文獻
    [1] E. A. Codman, The Shoulder: Rupture of the Supraspinatus Tendon and Other Lesions in or About the Subacromial Bursa, 1934.
    [2] N. JS, “Adhesive capsulitis of the shoulder, a study of the pathological findings in periarthritis of the shoulder,” J Bone Joint Surg Am, no. 27, pp. 211-222, 1945.
    [3] B. J. Lundberg, “The frozen shoulder. Clinical and radiographical observations. The effect of manipulation under general anesthesia. Structure and glycosaminoglycan content of the joint capsule. Local bone metabolism,” Acta Orthop Scand Suppl, vol. 119, pp. 1-59, 1969.
    [4] T. D, “Adhesive capsulitis,” Emedicine, vol. 11, pp. 7, 2005.
    [5] R. J. Neviaser, and T. J. Neviaser, “The frozen shoulder. Diagnosis and management,” Clin Orthop Relat Res, no. 223, pp. 59-64, Oct, 1987.
    [6] 李宗述, 運動復健學: 淑馨出版社, 1997.
    [7] 楊榮森, 骨骼肌肉與關節疾患治療手冊, p.^pp. 87-88, 合記圖書出版社, 1992.
    [8] J. Hamer, and J. A. Kirk, “Physiotherapy and the frozen shoulder: a comparative trial of ice and ultrasonic therapy,” N Z Med J, vol. 83, no. 560, pp. 191-2, Mar 24, 1976.
    [9] C.-M. C. Y.-C. C. B.-Y. Hsiao, “THE DESIGN OF A SHOULDER REHABILITATION GAME SYSTEM,” in IET International Conference on Frontier Computing, Taichung, Taiwan, 2010, pp. p. 151 – 156.
    [10] D. Meldrum, A. Glennon, S. Herdman, D. Murray, and R. McConn-Walsh, “Virtual reality rehabilitation of balance: assessment of the usability of the Nintendo Wii((R)) Fit Plus,” Disabil Rehabil Assist Technol, vol. 7, no. 3, pp. 205-10, May, 2012.
    [11] H. C. Fischer, K. Stubblefield, T. Kline, X. Luo, R. V. Kenyon, and D. G. Kamper, “Hand rehabilitation following stroke: a pilot study of assisted finger extension training in a virtual environment,” Top Stroke Rehabil, vol. 14, no. 1, pp. 1-12, Jan-Feb, 2007.
    [12] G. Burdea, V. Popescu, V. Hentz, and K. Colbert, “Virtual reality-based orthopedic telerehabilitation,” IEEE Trans Rehabil Eng, vol. 8, no. 3, pp. 430-2, Sep, 2000.
    [13] A. S. Merians, D. Jack, R. Boian, M. Tremaine, G. C. Burdea, S. V. Adamovich, M. Recce, and H. Poizner, “Virtual reality-augmented rehabilitation for patients following stroke,” Phys Ther, vol. 82, no. 9, pp. 898-915, Sep, 2002.
    [14] A. N. Krichevets, E. B. Sirotkina, I. V. Yevsevicheva, and L. M. Zeldin, “Computer games as a means of movement rehabilitation,” Disabil Rehabil, vol. 17, no. 2, pp. 100-5, Feb-Mar, 1995.
    [15] M. Kuttuva, R. Boian, A. Merians, G. Burdea, M. Bouzit, J. Lewis, and D. Fensterheim, “The Rutgers Arm, a rehabilitation system in virtual reality: a pilot study,” Cyberpsychol Behav, vol. 9, no. 2, pp. 148-51, Apr, 2006.
    [16] L. A. Boyd, and C. J. Winstein, “Explicit Information Interferes with Implicit Motor Learning of Both Continuous and Discrete Movement Tasks After Stroke,” Journal of Neurologic Physical Therapy, vol. 30, no. 2, pp. 46-57 10.1097/01.NPT.0000282566.48050.9b, 2006.
    [17] L. A. Boyd, B. M. Quaney, P. S. Pohl, and C. J. Winstein, “Learning Implicitly: Effects of Task and Severity After Stroke,” Neurorehabilitation and Neural Repair, April 6, 2007, 2007.
    [18] M. W. Krueger, Artificial reality II, Reading, Mass.: Addison-Wesley, 1991.
    [19] H. Rheingold, “Virtual Reality,” July 1991.
    [20] M. A. Shapiro, and D. G. McDonald, “I'm Not a Real Doctor, but I Play One in Virtual Reality: Implications of Virtual Reality for Judgments about Reality,” Journal of Communication, vol. 42, no. 4, pp. 94-114, 1992.
    [21] A. A. Rizzo, T. Bowerly, J. G. Buckwalter, D. Klimchuk, R. Mitura, and T. D. Parsons, “A virtual reality scenario for all seasons: the virtual classroom,” CNS Spectr, vol. 11, no. 1, pp. 35-44, Jan, 2006.
    [22] T. D. Parsons, T. Bowerly, J. G. Buckwalter, and A. A. Rizzo, “A controlled clinical comparison of attention performance in children with ADHD in a virtual reality classroom compared to standard neuropsychological methods,” Child Neuropsychol, vol. 13, no. 4, pp. 363-81, Jul, 2007.
    [23] 徐正會、周承緯, “手部復健器之分類與分析,” in 2004精密機械與製造技術研討會, 國立臺北科技大學, 2004.
    [24] H. Jampol, “Exercise treatment for the frozen shoulder,” Phys Ther Rev, vol. 30, no. 6, pp. 221-9, Jun, 1950.
    [25] M. Hauschild, R. Davoodi, and G. E. Loeb, “A virtual reality environment for designing and fitting neural prosthetic limbs,” IEEE Trans Neural Syst Rehabil Eng, vol. 15, no. 1, pp. 9-15, Mar, 2007.
    [26] K. Baheux, M. Yoshizawa, and Y. Yoshida, “Simulating hemispatial neglect with virtual reality,” J Neuroeng Rehabil, vol. 4, pp. 27, 2007.
    [27] D. J. Sturman, A Brief History of Motion Capture for Computer Character Animation.
    [28] A. Menache, “Understanding Motion Capture for Computer Animation and Video Games.”
    [29] S. Zhang, H. Hu, and H. Zhou, “An interactive Internet-based system for tracking upper limb motion in home-based rehabilitation,” Med Biol Eng Comput, vol. 46, no. 3, pp. 241-9, Mar, 2008.
    [30] W.-Y. L. Cheng-Hsien Lin, “Human Action Classification using Histogram-based Discriminative Embedding,” Intelligent Signal Processing and Communications Systems (ISPACS), 2012 International Symposium on, pp. 7-11, 4-7 Nov. 2012, 2012.
    [31] A. A. Rizzo, I. Cohen, P. L. Weiss, J. G. Kim, S. C. Yeh, B. Zali, and J. Hwang, “Design and development of virtual reality based perceptual-motor rehabilitation scenarios,” Conf Proc IEEE Eng Med Biol Soc, vol. 7, pp. 4852-5, 2004.
    [32] S. V. Adamovich, G. G. Fluet, A. Mathai, Q. Qiu, J. Lewis, and A. S. Merians, “Design of a complex virtual reality simulation to train finger motion for persons with hemiparesis: a proof of concept study,” J Neuroeng Rehabil, vol. 6, pp. 28, 2009.
    [33] J. A. Beebe, and C. E. Lang, “Active range of motion predicts upper extremity function 3 months after stroke,” Stroke, vol. 40, no. 5, pp. 1772-9, May, 2009.
    [34] J. M. Cogollor, C. Hughes, M. Ferre, J. Rojo, J. Hermsdorfer, A. Wing, and S. Campo, “Handmade task tracking applied to cognitive rehabilitation,” Sensors (Basel), vol. 12, no. 10, pp. 14214-31, 2012.
    [35] http://msdn.microsoft.com/zh-tw/hh367958.aspx.
    [36] B. Lange, C. Y. Chang, E. Suma, B. Newman, A. S. Rizzo, and M. Bolas, “Development and evaluation of low cost game-based balance rehabilitation tool using the Microsoft Kinect sensor,” Conf Proc IEEE Eng Med Biol Soc, vol. 2011, pp. 1831-4, 2011.
    [37] T. C. Alana Da Gama, Lucas Figueiredo, Veronica Teichrieb, “Poster: Improving Motor Rehabilitation Process through a Natural
    Interaction Based System Using Kinect Sensor,” in 3D User Interfaces (3DUI), Costa Mesa, CA, 2012, pp. 145 - 146.
    [38] S. H. Jang, Y. H. Kim, S. H. Cho, J. H. Lee, J. W. Park, and Y. H. Kwon, “Cortical reorganization induced by task-oriented training in chronic hemiplegic stroke patients,” Neuroreport, vol. 14, no. 1, pp. 137-141, Jan 20, 2003.
    [39] R. Likert, A technique for the measurement of attitudes, New York,, 1932.
    [40] F. D. Davis, R. P. Bagozzi, and P. R. Warshaw, “User acceptance of computer technology: a comparison of two theoretical models,” Management Science, vol. 35, no. 8, pp. 982-1003, August 1989.
    [41] J. S. Roy, J. C. MacDermid, and L. J. Woodhouse, “A systematic review of the psychometric properties of the Constant-Murley score,” J Shoulder Elbow Surg, vol. 19, no. 1, pp. 157-64, Jan, 2010.
    [42] C. R. Constant, and A. H. Murley, “A clinical method of functional assessment of the shoulder,” Clin Orthop Relat Res, no. 214, pp. 160-4, Jan, 1987.

    QR CODE
    :::