| 研究生: |
黃建瑄 HUANG,JIAN-SYUAN |
|---|---|
| 論文名稱: |
快速熱退火之石墨烯特性分析 Characteristic analysis of graphene by rapid thermal annealing |
| 指導教授: |
郭倩丞
GUO,CIAN-CHENG 詹佳樺 JHAN,JIA-HUA |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 石墨烯 、化學氣象沉積法 、快速熱退火 、銅箔 |
| 外文關鍵詞: | graphene, chemical vapor deposition, rapid thermal annealing, copper foil |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯為近年來備受展望的材料,具有高導電性、高穿透率及高強度的特性。而製程石墨烯的方法有很多種,其中以高溫化學氣相沉積法最為常見,因其製程之石墨烯較為穩定且品質較好,但因製程時間較長、成本高所以目前無法量產,因此縮短製程時間、大面積製程為現階段研究重要之方向。
本研究使用的為快速升溫系統(rapid thermal process, RTP),將石墨烯製程時間從180分鐘縮短至40分鐘,使用銅箔作為基板,用高溫1080度退火,並用原子力顯微鏡(atomic force microscope, AFM)及X光繞射儀器(X-ray Diffractometer,XRD)分析得知銅箔呈現單晶(111)且粗糙度大幅下降。利用電子掃描式顯微鏡(Scanning Electron Microscope, SEM)分析未長滿石墨烯之密度。氫氣(H2)對於生長石墨烯之重要性,利用拉曼光譜儀及霍爾量測儀器去分析,成功以1080度退火10分鐘(Ar:1000sccm、H2:20sccm),生長10分鐘(Ar:1000sccm、CH4:1及H2:50sccm)成長石墨烯,其片電阻達到450~900(Ω/□)、載子遷移率850~1050(cm2/Vs)。
In recent years, gaphene is an interesting material. Graphene has high conductivity, transmittance and strength characteristics. There are many processes to produce graphene. Among these processes, high-temperature chemical vapor deposition method is the best one to produce the high-quality graphene, but the production waste a lot of time, and it is expensive. So the shorten time of production and large-area graphene are the major researching trend in the graphene technology.
This study applies rapid thermal process system for shortening the graphene growth time from 180 minute to 40 minute. Copper foil is the substrate. The high temperature (1080 oC) used for annealing. X-ray Diffractometer adopted to know crystal direction of copper of Cu (111). Atomic force microscope reveals the reducing roughness. Growing the density of graphene analyzes by using scanning electron microscope. The hydrogen is important to grow graphene. Using Raman spectrometer and Hall for the analysis, The result indicated that the most successful condition is at 1080oC annealing temperature for 10 minutes(Ar:1000 sccm、H2:20 sccm), growth of graphene for 10 minutes (Ar:1000 sccm、CH4:1 sccm、H2:50 sccm), the sheet resistance is 450 ~ 900 (Ω / □), and the carrier mobility is 850 ~ 1050 (cm2 / Vs).
[1] Lee, Tune. "Physicists show electrons can travel more than 100 times faster in graphene." The University of Maryland (2008) .
[2] Lee,C. "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. " ,321.5887 (2008): 385-388.
[3] Nair,R.R. , Blake,P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., & Geim, A. K. "Fine structure constant defines visual transparency of graphene. Science.", 320.5881 (2008): 1308-1308.
[4] Geim, Andre K., and Konstantin S. Novoselov. "The rise of graphene." Nature materials 6.3 (2007): 183-191.
[5] Bostwick, Aaron, et al. "Experimental studies of the electronic structure of graphene." Progress in Surface Science 84.11 (2009): 380-413.
[6] Neto, AH Castro, et al. "The electronic properties of graphene." Reviews of modern physics 81.1 (2009): 109.
[7] Geim, Andre Konstantin. "Graphene: status and prospects." science 324.5934 (2009): 1530-1534.
[8] Pollard, B., Growing graphene via chemical vapor eposition. Pomona College, Claremont. (2011).
[9] Neto, AH Castro, et al. "The electronic properties of graphene." Reviews of modern physics 81.1 (2009): 109.
[10] Semenoff, Gordon W. "Condensed-matter simulation of a three-dimensional anomaly." Physical Review Letters 53.26 (1984): 2449.
[11] 林永昌, 呂俊頡, 鄭碩方, 邱博文, 石墨烯之電子能帶特性與其元件應用, in, Physics bimonthly, 2011.
[12] Bolotin, Kirill I., et al. "Ultrahigh electron mobility in suspended graphene." Solid State Communications 146.9 (2008): 351-355.
[13] Bonaccorso, Francesco, et al. "Graphene photonics and optoelectronics." Nature photonics 4.9 (2010): 611-622
[14] 楊明輝,“透明導電膜”,藝軒圖書出版社.,(2006)。
[15] Li, Xuesong, et al. "Transfer of large-area graphene films for high-performance transparent conductive electrodes." Nano letters 9.12 (2009): 4359-4363.
[16] Frank, I. W., et al. "Mechanical properties of suspended graphene sheets." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 25.6 (2007): 2558-2561.
[17] 楊明輝,“工業材料”,藝軒圖書出版社.,(2001)。
[18] Bi, Hui, et al. "Transparent conductive graphene films synthesized by ambient pressure chemical vapor deposition used as the front electrode of CdTe solar cells." Advanced materials 23.28 (2011): 3202-3206.
[19] Novoselov, Kostya S., et al. "Electric field effect in atomically thin carbon films." science 306.5696 (2004): 666-669.
[20] De Heer, Walt A., et al. "Epitaxial graphene." Solid State Communications 143.1 (2007): 92-100. (2007).
[21] Li, Xiaolin, et al. "Highly conducting graphene sheets and Langmuir–Blodgett films." Nature nanotechnology 3.9 (2008): 538-542.
[22] Zhu, Yanwu, et al. "Graphene and graphene oxide: synthesis, properties, and applications." Advanced materials 22.35 (2010): 3906-3924.
[23] Xiao, Ke, et al. "The study of the effects of cooling conditions on high quality graphene growth by the APCVD method." Nanoscale 5.12 (2013): 5524-5529.
[24] Eda, Goki, Giovanni Fanchini, and Manish Chhowalla. "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material." Nature nanotechnology 3.5 (2008): 270-274.
[25] Blake, P., et al. "Making graphene visible." Applied Physics Letters 91.6 (2007): 063124.
[26] Li, Xuesong, et al. "Large-area synthesis of high-quality and uniform graphene films on copper foils." Science 324.5932 (2009): 1312-1314.
[27] Bae, Sukang, et al. "Roll-to-roll production of 30-inch graphene films for transparent electrodes." Nature nanotechnology 5.8 (2010): 574-578.
[28] Ismach, Ariel, et al. "Direct chemical vapor deposition of graphene on dielectric surfaces." Nano letters 10.5 (2010): 1542-1548.
[29] Lee, Yun-Hi, et al. "Scalable growth of free-standing graphene wafers with copper (Cu) catalyst on SiO 2/Si substrate: thermal conductivity of the wafers." Applied Physics Letters 96.8 (2010): 083101.
[30] Reina, Alfonso, et al. "Growth of large-area single-and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces." Nano Research 2.6 (2009): 509-516.
[31] Kim, Keun Soo, et al. "Large-scale pattern growth of graphene films for stretchable transparent electrodes." nature 457.7230 (2009): 706.
[32] Sutter, E., P. Albrecht, and P. Sutter. "Graphene growth on polycrystalline Ru thin films." Applied Physics Letters 95.13 (2009): 133109.
[33] Kang, Byung Jin, et al. "Monolayer graphene growth on sputtered thin film platinum." Journal of Applied Physics 106.10 (2009): 104309.
[34] Su, Ching-Yuan, et al. "Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition." Nano letters 11.9 (2011): 3612-3616.
[35] Riikonen, Juha, et al. "Photo-thermal chemical vapor deposition of graphene on copper." Carbon 62 (2013): 43-50.
[36] Kim, Sang-Min, et al. "Synthesis of CVD-graphene on rapidly heated copper foils." Nanoscale 6.9 (2014): 4728-4734.
[37] Kim, W., et al. "Growth of CVD graphene on copper by rapid thermal processing." MRS Online Proceedings Library Archive 1451 (2012): 27-32.
[38] Mehdipour, Hamid, and Kostya Ostrikov. "Kinetics of low-pressure, low-temperature graphene growth: toward single-layer, single-crystalline structure." ACS nano 6.11 (2012): 10276-10286.