跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王敬程
Jing-Cheng Wang
論文名稱: 苯甲酸球晶系統在烘箱內之乾燥行為探討
Investigation of the Drying Behavior of Spherical Agglomerates of Benzoic Acid in a Drying Oven
指導教授: 李度
Tu Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 117
中文關鍵詞: 能源節省苯甲酸乾燥球晶
外文關鍵詞: energy saving, benzoic acid, drying, spherical agglomeration
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 球型結晶是一項具突破性的粉體技術,不僅縮短製程步驟,也增加產品的可壓縮性、包裝性和流動性等。節能減碳雖是全球性重要議題,球晶能節省多少能源卻很少被探討。本研究以苯甲酸為系統,比較球晶製程和傳統再結晶在過濾和乾燥過程中的差異,及改變過程參數對乾燥結果的影響。本研究第一部分透過再結晶和球晶技術分別製備細小的苯甲酸晶體和其球狀結晶,通過真空幫浦過濾,從而計算流體通過時間與壓力計算濾餅阻力,發現球晶濾餅之過濾速度較細小晶體濾餅之過濾速度提升將近四倍;接著將產物放入烘箱內進行乾燥實驗,紀錄失重與時間的關係。可以發現球晶製程不僅使初始含水率下降、乾燥時間縮短和總乾燥速率提升,乾燥曲線和乾燥過程中內部機制也不盡相同。球晶製程相較於再結晶製程可節省70 %用於乾燥的能量。第二部分則比較不同參數條件下對球晶乾燥的影響,針對單一參數分別進行討論。包括洗滌操作存在的必要、改變批次中橋接液體積和種類、被乾燥物料的重量和烘箱內的溫度。發現洗滌操作和改變橋接液體積對苯甲酸球晶系統的乾燥行為影響不大,橋接液種類和被乾燥物料的重量對乾燥行為有較為顯著的差異,乾燥溫度的變化對乾燥曲線和能源消耗都會造成影響。這些實驗數據對於未來放大製程有著非常大的參考價值。


    Spherical agglomeration is a breakthrough in powder technology that offers numerous advantages, including the shortening of processing steps and improvement in compressibility, packability, and flowability of products. Although the potential of saving energy by spherical agglomeration is crucial in the context of energy conservation and carbon reduction, it has been underexplored. In this study, we focused on the system of benzoic acid, and compared the effects of spherical crystallization and conventional recrystallization on its filtration and drying process. The influence of process parameters on drying behavior would also be considered by us. In the first part, fine benzoic acid crystals and spherical agglomerates were prepared separately by recrystallization and spherical agglomeration, respectively. Vacuum filtration was performed to measure the passing time of washing water and pressure drop across the filter cake, the results demonstrated more than three times improvement in filtration efficiency for the spherical agglomerates. Subsequently, drying experiments were conducted in a drying oven, recording the weight loss of the wet cake versus time. We found that spherical agglomeration not only reduced the initial moisture content and shortened drying time but also enhanced the overall drying rate, with distinct drying curves and internal mechanisms compared to the ones of recrystallization. Notably, the spherical agglomeration of benzoic acid resulted in 70% in energy savings during drying. In the second part, the effects of different operation parameters conditions on the drying behavior of spherical agglomerates were investigated individually. The study involved examining the necessity of washing operation, varying the volume and type of bridging liquid, the amount of dried sample, and controlling the oven temperature. The results revealed that washing operation and changes in bridging liquid volume had minimal impact on the drying behavior of benzoic acid round granules, while the choice of bridging liquid type and the weight of material had shown more significant differences in drying behavior. The varying of drying temperatures influenced both the drying behavior and total energy consumption. Those experimental attempts have provided valuable insights for further scale-up processes.

    摘要 I Abstract II Acknowledgment IV Table of Contents VI List of Figures IX List of Tables XIV Chapter 1 Introduction 1 1.1 Spherical Crystallization 1 1.2 Drying and Filtration 5 1.3 Benzoic Acid 11 1.4 Conceptual Framework 15 Chapter 2 Experimental Sections 17 2.1 Materials 17 2.1.1 Chemicals 17 2.1.2 Solvents 17 2.2 Experimental Methods 19 2.2.1 Initial Solvent Screening of Benzoic Acid 19 2.2.2 Solubility Measurements of Benzoic Acid in Ethanol 20 2.2.3 Recrystallization and Spherical Agglomeration of Benzoic Acid 21 2.2.4 Filtration and Drying Procedures 25 2.2.5 Drying Behaviors of Spherical Agglomerates of Benzoic Acid Crystals Generated by Different Process Parameters 29 2.3 Analytical Instruments 33 2.3.1 Optical Microscopy (OM) 33 2.3.2 Hot Stage & Polarizing Optical Microscopy (HSOM) 33 2.3.3 Scanning Electron Microscopy (SEM) 33 2.3.4 Fourier Transform Infrared Spectroscopy (FT-IR) 34 2.3.5 Differential Scanning Calorimetry (DSC) 35 2.3.6 Powder X-ray Diffraction (PXRD) 36 2.3.7 BET 37 2.3.8 Video Camera 37 Chapter 3 Results and Discussion 38 3.1 Initial Solvent Screening of Benzoic Acid 38 3.1.1 Form Space of Benzoic Acid 38 3.1.2 Solubility Curves of Benzoic Acid 40 3.2 Drying and Filtration Properties of Fine Crystals and Spherical Agglomerates 44 3.3 Drying Behavior of Spherical Agglomerates of Benzoic Acid in Different Process Parameters 56 3.3.1 The Effects of Washing on Drying 56 3.3.2 The Effects of Bridging Liquid to Solid Ratio 62 3.3.3 The Effects of Bridging Liquid Types 67 3.3.4 The Effects of the Amount of Dried Solids 70 3.3.5 The Effects of the Drying Oven Temperature 73 3.4 Analysis and Characterization 79 3.4.1 FT-IR Spectra 79 3.4.2 DSC Scans 81 3.4.3 PXRD Patterns 82 Chapter 4 Conclusion and Future Works 86 References 89

    Kawashima, Y.; Okumura, M.; Takenaka, H. Spherical Crystallization: Direct Spherical Agglomeration of Salicylic Acid Crystals During Crystallization. Science 1982, 216 (4550), 1127-1128.
    Kuo, P.-C.; Huang, S.-W.; Chang, C.-F. Method of Preparing Drug Agglomerate. U.S. Patent 9,668,975 B2, June 6, 2017.
    Katta, J.; Rasmuson, Å. C. Spherical Crystallization of Benzoic Acid. Int. J. Pharm. 2008, 348 (1-2), 61-69.
    Patil, P.; Gupta, V.; Udupi, R.; Srikanth, K.; Patil, N. Spherical Agglomeration–Direct Tabletting Technique. Int. Res. J. Pharm. 2011, 2 (11).
    Bharti, N.; Bhandari, N.; Sharma, P.; Singh, K.; Kumar, A. Spherical Crystallization: A Novel Drug Delivery Approach. Asian J. Biomed. Pharm. Sci. 2013, 3 (18), 10-16.
    Dixit, M.; Kulkarni, P.; Subhash, P.; Reddy, R. Spherical Agglomeration of Indomethacin by Solvent Change Method. Int. J. Pharm. Res. Dev. Online 2010, 2 (9).
    Prathipati, S.; Ganesan, V. Spherical Crystallization: A Method to Improve Physicochemical Properties. Int. J. Pharm. Sci. Rev. Res. 2011, 6 (1), 60-63.
    Velivela, S.; Pati, N. B.; Gupta, V. R. Spherical Crystallization: A Novel Technique in Drug Particle Designing. World J. Pharm. Pharm. Sci. 2018, 7, 363-376.
    Kulkarni, P.; Nagavi, B. Spherical Crystallization. Ind. J. Pharm. Educ. 2002, 36 (2), 66-73.
    Sano, A.; Kuriki, T.; Handa, T.; Takeuchi, H.; Kawashima, Y. Particle Design of Tolbutamide in the Presence of Soluble Polymer or Surfactant by the Spherical Crystallization Technique: Improvement of Dissolution Rate. J. Pharm. Sci. 1987, 76 (6), 471-474.
    Malviya, V.; Manekar, S. Design, Development and Evaluation of Aceclofenac and Curcumin Agglomerates by Crystallo Co-Agglomeration Technique. Res. J. Pharm. Technol. 2021, 14 (3), 1535-1541.
    Thati, J.; Rasmuson, Å. C. On the Mechanisms of Formation of Spherical Agglomerates. Eur. J. Pharm. Sci. 2011, 42 (4), 365-379.
    Kawashima, Y.; Kurachi, Y.; Takenaka, H. Preparation of Spherical Wax Matrices of Sulfamethoxazole by Wet Spherical Agglomeration Technique Using a CMSMPR Agglomerator. Powder Technol. 1982, 32 (2), 155-161.
    Paradkar, A.; Pawar, A.; Chordiya, J.; Patil, V.; Ketkar, A. Spherical Crystallization of Celecoxib. Drug Dev. Ind. Pharm. 2002, 28 (10), 1213-1220.
    Amaro-González, D.; Biscans, B. Spherical Agglomeration During Crystallization of an Active Pharmaceutical Ingredient. Powder Technol. 2002, 128 (2-3), 188-194.
    Kawashima, Y.; Aoki, S.; Takenaka, H. Spherical Agglomeration of Aminophylline Crystals During Reaction in Liquid by the Spherical Crystallization Technique. Chem. Pharm. Bull. 1982, 30 (5), 1900-1902.
    Morishima, K.; Kawashima, Y.; Kawashima, Y.; Takeuchi, H.; Niwa, T.; Hino, T. Micromeritic Characteristics and Agglomeration Mechanisms in the Spherical Crystallization of Bucillamine by the Spherical Agglomeration and the Emulsion Solvent Diffusion Methods. Powder Technol. 1993, 76 (1), 57-64.
    Zhang, H.; Chen, Y.; Wang, J.; Gong, J. Investigation on the Spherical Crystallization Process of Cefotaxime Sodium. Ind. Eng. Chem. Res. 2010, 49 (3), 1402-1411.
    Blandin, A.; Mangin, D.; Rivoire, A.; Klein, J.; Bossoutrot, J. Agglomeration in Suspension of Salicylic Acid Fine Particles: Influence of Some Process Parameters on Kinetics and Agglomerate Final Size. Powder Technol. 2003, 130 (1-3), 316-323.
    Subero-Couroyer, C.; Mangin, D.; Rivoire, A.; Blandin, A.; Klein, J. Agglomeration in Suspension of Salicylic Acid Fine Particles: Analysis of the Wetting Period and Effect of the Binder Injection Mode on the Final Agglomerate Size. Powder Technol. 2006, 161 (2), 98-109.
    Thati, J.; Rasmuson, Å. C. Particle Engineering of Benzoic Acid by Spherical Agglomeration. Eur. J. Pharm. Sci. 2012, 45 (5), 657-667.
    Kawashima, Y.; Okumura, M.; Takenaka, H. The Effects of Temperature on the Spherical Crystallization of Salicylic Acid. Powder Technol. 1984, 39 (1), 41-47.
    Maghsoodi, M. Effect of Process Variables on Physicomechanical Properties of the Agglomerates Obtained by Spherical Crystallization Technique. Pharm. Dev. Technol. 2011, 16 (5), 474-482.
    Varshosaz, J.; Tavakoli, N.; Salamat, F. A. Enhanced Dissolution Rate of Simvastatin Using Spherical Crystallization Technique. Pharm. Dev. Technol. 2011, 16 (5), 529-535.
    Peña, R.; Nagy, Z. K. Process Intensification through Continuous Spherical Crystallization Using a Two-stage Mixed Suspension Mixed Product Removal (MSMPR) System. Cryst. Growth Des. 2015, 15 (9), 4225-4236.
    Peña, R.; Oliva, J. A.; Burcham, C. L.; Jarmer, D. J.; Nagy, Z. K. Process Intensification through Continuous Spherical Crystallization Using an Oscillatory Flow Baffled Crystallizer. Crystal Growth & Design 2017, 17 (9), 4776-4784.
    Chen, C. W.; Lee, H. L.; Yeh, K. L.; Lee, T. Effects of Scale-up and Impeller Types on Spherical Agglomeration of Dimethyl Fumarate. Ind. Eng. Chem. Res. 2021, 60 (30), 11555-11567.
    Tiwari, S.; Verma, P. Spherical Crystallization-A Novel Drug Delivery System. Int. J. Pharm. Life Sci. 2011, 2 (9).
    Chontanawat, J. Relationship Between Energy Consumption, CO2 Emission and Economic Growth in ASEAN: Cointegration and Causality Model. Energy Rep. 2020, 6, 660-665.
    Bureau of Energy, Ministry of Economic Affairs
    https://www.moeaboe.gov.tw/ecw/populace/content/ContentDesc.aspx?menu_id=20850 (accessed 2023-02-03)
    International Energy Agency, IEA
    https://www.iea.org/reports/industry (accessed 2023-02-03)
    Mujumdar, A.S. Handbook of Industrial Drying, Third ed.; U.S., Boca Raton: CRC Press, 2006.
    Chandramohan, V. Influence of Air Flow Velocity and Temperature on Drying Parameters: An Experimental Analysis with Drying Correlations. In IOP Conf. Ser.: Mater. Sci. Eng. 2018; IOP Publishing: Vol. 377, p 012197.
    Raghavan, G. V.; Rennie, T. J.; Sunjka, P.; Orsat, V.; Phaphuangwittayakul, W.; Terdtoon, P. Overview of New Techniques for Drying Biological Materials with Emphasis on Energy Aspects. Braz. J. Chem. Eng. 2005, 22, 195-201.
    Moses, J.; Norton, T.; Alagusundaram, K.; Tiwari, B. Novel Drying Techniques for the Food Industry. Food Eng. Rev. 2014, 6, 43-55.
    Kudra, T.; Mujumdar, A. Advanced Drying Technologies. New York. Marcel Dekker, Inc. 2002.
    Prasertsan, S.; Saen-Saby, P. Heat Pump Drying of Agricultural Materials. Drying Technol. 1998, 16 (1-2), 235-250.
    Skjoldebrand C In: Richardson P (ed) Thermal Technologies in Food Processing, Woodhead publishing limited, Cambridge, England, 2001; pp 208-240.
    Wray, D.; Ramaswamy, H. S. Novel Concepts in Microwave Drying of Foods. Drying Technol. 2015, 33 (7), 769-783.
    Ende, D. J. A. Chemical engineering in the pharmaceutical industry: R & D to manufacturing; John Wiley & Sons, 2011; pp 315-345.
    Parikh, D. M. Solids Drying: Basics and Applications. Chem. Eng. 2014, 121 (4), 42-45.
    da Silva, F. B.; Fakhouri, F. M.; Galante, R. M.; Antunes, C. A. Drying Kinetics of French Fries Covered with Soy Protein/Starch Edible Coatings.
    McCabe, W.L.; Smith, J.L.; Harriott, P. Mechanical Separations. In Unit Operations of Chemical Engineering. 7th Ed., McGraw-Hill Education (Asia): Singapore, 2005; pp 1006-1024.
    Lee, H. L.; Chiu, C. W.; Lee, T. Engineering Terephthalic Acid Product from Recycling of PET Bottles Waste for Downstream Operations. Chem. Eng. J. Adv. 2021, 5, 100079.
    Majekodunmi, S.; Olorunsola, E. Review of Some Recent Advances on Filtration in the Pharmaceutical Industry. IOSR J. Pharm. Biol. Sci. 2014, 9 (4), 30-38.
    J. Matteson, Filtration Principles and Practices; Gas Filtration Theory in 2nd Edition: United States, 1987; pp 28-32.
    Stephan, E.; Chase, G. Use of Genetic Algorithms as an Aid in Modeling Deep Bed Filtration. Comput. Chem. Eng. 2003, 27 (2), 281-292.
    Am Ende, D.; Birch, M.; Brenek, S. J.; Maloney, M. T. Development and application of laboratory tools to predict particle properties upon scale-up in agitated filter-dryers. Org. Process Res. Dev. 2013, 17 (10), 1345-1358.
    Del Olmo, A.; Calzada, J.; Nuñez, M. Benzoic Acid and Its Derivatives as Naturally Occurring Compounds in Foods and as Additives: Uses, exposure, and controversy. Crit. Rev. Food Sci. Nutr. 2017, 57 (14), 3084-3103.
    Maki, T.; Takeda, K. Benzoic Acid and Derivatives. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH, 2000; pp 329-341.
    Global Benzoic Acid Market Forecast to 2028 - COVID-19 Impact and Global Analysis by Application. Research and Markets.
    https://www.researchandmarkets.com/reports/5598060/global-benzoic-acid-market-forecast-to-2028 (accessed 2023-02-08)
    Yalkowsky, S. H.; He, Y.; Jain, P. Handbook of aqueous solubility data; CRC press, 2016; pp 368.
    Thati, J.; Nordström, F. L.; Rasmuson, Å. C. Solubility of Benzoic Acid in Pure Solvents and Binary Mixtures. J. Chem. Eng. Data 2010, 55 (11), 5124-5127.
    Peña, R.; Jarmer, D. J.; Burcham, C. L.; Nagy, Z. K. Further Understanding of Agglomeration Mechanisms in Spherical Crystallization Systems: Benzoic Acid Case Study. Cryst. Growth Des. 2019, 19 (3), 1668-1679.
    Orlewski, P. M.; Ahn, B.; Mazzotti, M. Tuning the Particle Sizes in Spherical Agglomeration. Cryst. Growth Des. 2018, 18 (10), 6257-6265.
    Chen, M.; Liu, X.; Yu, C.; Yao, M.; Xu, S.; Tang, W.; Song, X.; Dong, W.; Wang, G.; Gong, J. Strategy of Selecting Solvent Systems for Spherical Agglomeration by the Lifshitz-van der Waals Acid-Base Approach. Chem. Eng. Sci. 2020, 220, 115613.
    ICH, H. G. Impurities: Guideline for Residual Solvents. Q3C (R6) 2016.
    Alfonsi, K.; Colberg, J.; Dunn, P. J.; Fevig, T.; Jennings, S.; Johnson, T. A.; Kleine, H. P.; Knight, C.; Nagy, M. A.; Perry, D. A. Green Chemistry Tools to Influence a Medicinal Chemistry and Research Chemistry Based Organisation. Green Chem. 2008, 10 (1), 31-36.
    Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening. Pharm. Tech. 2006, 30 (10), 72-92.
    Grosse Daldrup, J.-B.; Held, C.; Ruether, F.; Schembecker, G.; Sadowski, G. Measurement and Modeling Solubility of Aqueous Multisolute Amino-Acid Solutions. Ind. Eng. Chem. Res. 2010, 49 (3), 1395-1401.
    McCabe, W.L.; Smith, J.L.; Harriott, P. Drying of Solids. In Unit Operations of Chemical Engineering. 7th Ed., McGraw-Hill Education (Asia): Singapore, 2005; pp. 796-833.
    Stieger, N.; Liebenberg, W. Recrystallization of Active Pharmaceutical Ingredients. In Crystallization: Science and Technology; Andreeta, M. R. B., Ed.; InTech: Rijeka, Croatia, 2012; pp 183-201.
    Patil, S.; Sahoo, S. Pharmaceutical overview of spherical crystallization. Der Pharmacia Lettre 2010, 2 (1), 421-426.
    Sano, Y.; Keey, R. The Drying of a Spherical Particle Containing Colloidal Material into a Hollow Sphere. Chem. Eng. Sci. 1982, 37 (6), 881-889.
    Bejan, A.; Dincer, I.; Lorente, S.; Miguel, A. F.; Reis, A. H. Drying of Porous Materials. In Porous and Complex Flow Structures in Modern Technologies, Springer New York, 2004; pp 283-314.
    Scherer, G. W. Theory of Drying. J. Am. Ceram. Soc. 1990, 73 (1), 3-14.
    Irawan, A. Isothermal Drying of Pore Networks: Influence of Pore Structure on Drying Kinetics. Magdeburg, Univ., Diss., 2006.
    Kuo, M.; Barrett, E. Continuous Filter Cake Washing Performance. AlChE J. 1970, 16 (4), 633-638.
    Ottoboni, S.; Simurda, M.; Wilson, S.; Irvine, A.; Ramsay, F.; Price, C. Understanding Effect of Filtration and Washing on Dried Product: Paracetamol Case Study. Powder Technol. 2020, 366, 305-323.
    Aminabhavi, T.; Patil, V.; Aralaguppi, M.; Phayde, H. Density, Viscosity, and Refractive Index of the Binary Mixtures of Cyclohexane with Hexane, Heptane, Octane, Nonane, and Decane at (298.15, 303.15, and 308.15) K. J. Chem. Eng. Data. 1996, 41 (3), 521-525.
    Caparanga, A. R.; Reyes, R. A. L.; Rivas, R. L.; De Vera, F. C.; Retnasamy, V.; Aris, H. Effects of Air Temperature and Velocity on the Drying Kinetics and Product Particle Size of Starch from Arrowroot. In EPJ Web of Conferences, 2017; EDP Sciences: Vol. 162, p 01084.
    Hayashi, S.; Kimura, N. Infrared Spectra and Molecular Configuration of Benzoic Acid (Special Issue on Physical Chemistry). Bull. Inst. Chem. Res., Kyoto Univ. 1966, 44 (4), 335-340.
    Rodríguez-Rodríguez, W. A.; Colón, J.; Guzmán, R.; Rivera, H.; Mitk’El B, S.-B. Synthesis, Characterization and Electrochemical Characterization of Lead Selenide Sub-micron Particles Capped with a Benzoate Ligand and Prepared at Different Temperatures. Mater. Res. Express 2014, 1 (3), 035906.
    Roy, S.; Riga, A.; Alexander, K. Experimental Design Aids the Development of a Differential Scanning Calorimetry Standard Test Procedure for Pharmaceuticals. Thermochim. Acta 2002, 392-393, 399-404.
    Sim, G.; Robertson, J. M.; Goodwin, T. The Crystal and Molecular Structure of Benzoic Acid. Acta Crystallogr. 1955, 8 (3), 157-164.

    QR CODE
    :::