| 研究生: |
潘樹楠 Shu-Nam Poon |
|---|---|
| 論文名稱: |
初探橡膠粒砂土混合物的力學性質 |
| 指導教授: |
洪汶宜
Wen-Yi Hung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 橡膠粒砂土混合物 、壓密-不排水三軸試驗 、動力三軸試驗 、力學性質 |
| 外文關鍵詞: | Rubber Sand Mixture, static triaxial tests, cyclic triaxial tests |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
橡膠粒砂土混合物(Rubber Sand Mixture)中所使用的橡膠粒來源廣泛,其中汽車廢棄輪胎是材料來源之一,根據中華民國環境部2022的統計資料,台灣於2022年產生約15萬公噸的廢棄輪胎,而RSM技術能有效再利用廢棄輪胎,作為建築物基礎,以緩解和減少建築物因地震導致的損壞,從而達到可持續發展。因此本研究採用石英細砂及D_50=0.55 mm及D_50=3.00 mm的橡膠粒為試驗材料,以不同橡膠粒配比及粒徑作為變因,進行壓密-不排水三軸試驗,探討砂土和橡膠粒砂土混合物在不同橡膠粒配比及粒徑條件下之力學性質及其關聯性,同時進行動力三軸試驗,探討砂土和橡膠粒砂土混合物降低液化發生的可能性之能力。
試驗結果顯示,抗剪強度、視凝聚力、磨擦角、單位重及最佳含水量均與橡膠粒粒徑及配比相關。橡膠粒砂土混合物的抗剪強度之主要影響因素為有效圍壓、橡膠粒配比及橡膠粒平均粒徑;以橡膠粒配比作為控制變因的條件下,橡膠粒平均粒徑為3.00 mm的橡膠粒砂土混合物具較高抗剪強度;單位重及最佳含水量與橡膠粒配比存在負相關,平均粒徑3.00 mm的橡膠粒砂土混合物具較高單位重及最佳含水量; 視凝聚力會以先升後降之3次方程式形態出現,而磨擦角則隨橡膠粒配比上升而下降,可以2次方程進行迴歸,橡膠粒平均粒徑較高的橡膠粒砂土混合物具較高視凝聚力及磨擦角。在彈性模數方面,E0,E50及E100均隨橡膠粒重量配比上升而下降。在 E50方面,橡膠粒平均粒徑0.55 mm的混合物,其E50會於混合物中的橡膠粒重量配比達20 %後趨向穩定。在降低液化發生的可能性之能力之能力方面,橡膠粒重量配比為40 %的混合物能有效降低CSR= 0.1、0.2及0.3的反覆加載所帶來的液化發生的可能性,但對於CSR=0.4的反覆加載其降低液化發生的可能性之能力較弱。在彈性模數方面,E0、E50及E100於CSR=0.1的反覆加載條件下,其下降幅度最低,而E0、E50及E100於CSR=0.2、0.3及0.4的反覆加載條件下,其下降幅度相似。
The sources of rubber granules used in rubber sand mixture (RSM) are various, including discarded automobile tires. According to the data from the Ministry of Environment in Taiwan, there were about 150,000 tons of discarded automobile tires in 2022. However, RSM technology can effectively reuse waste tires while mitigating and reducing damage to buildings caused by earthquakes, thereby achieving sustainable development. Therefore, this study uses quartz fine sand and rubber particles of D50=0.55 mm and D50=3.00 mm as test materials, with different rubber content and particle sizes as variables to explore the mechanical properties of the rubber sand mixtures by conducting the consolidated undrained triaxial tests. On the other hand, the Cyclic triaxial tests are conducted to explore the liquefaction resistance of rubber sand mixtures.
The test results show that the main influencing factors of the shear strength of the rubber sand mixture are the effective confining pressure, the rubber content and the average particle size of the rubber particles. Under the same rubber content, the rubber sand mixture with 3.00 mm average particle size of the rubber particles has higher shear strength. The unit weight and optimal water content decrease as the rubber particle ratio increases. The rubber sand mixture with D50=3.00 mm has a higher unit weight and optimal moisture content; the apparent cohesion appears in the form of rising first and then falling, and the friction angle decreases as the rubber content increases. On the aspect of elastic modulus, E0, E50 and E100 indicate the rubber sand mixtures with D50=0.55 mm rubber granules have lower elastic modulus. Moreover, the E50 of the mixture with D50=0.55 mm tends to be stable in a lower rubber content. The rubber sand mixture with a higher average particle size of rubber particles has a higher apparent cohesion and friction angle. On the other hand, a rubber sand mixture with 40 % rubber content can effectively reduce the risk of liquefaction caused by the cyclic loading with CSR=0.1, 0.2 and 0.3, but its liquefaction resistance against cyclic loading with CSR=0.4 is weak. On the aspect of elastic modulus, the test condition with CSR=0.1, the decline in elastic modulus is the slowest in this test, and additionally, the tendency of the elastic modulus with test condition CSR=0.2, 0.3 and 0.4 respectively is close to one another.
1. ASTM C127-15, “Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate,” Annual Book of ASTM Standards, Vol. 04.02., pp. 1-5 (2019)
2. ASTM C136-19, “Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates,” Annual Book of ASTM Standards, Vol. 04.02., pp. 1-5 (2019)
3. ASTM D1557-12, “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort,” Annual Book of ASTM Standards, Vol. 04.08., pp. 1-14 (2012)
4. ASTM D4767-11, “Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils,” Annual Book of ASTM Standards, Vol. 04.08., pp. 1-14 (2011)
5. ASTM D5311-92, “Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil,” Annual Book of ASTM Standards, Vol. 04.08., pp. 1-10 (1992)
6. ASTM D6270-08, “Standard Practice for Use of Scrap Tires in Civil Engineering Applications,” Annual Book of ASTM Standards, Vol. 11.04., pp. 1-22 (2012)
7. Amuthan, M.S., Adimoolam, B., and Banerjee, S.,“Undrained cyclic responses of granulated rubber sand mixtures.” Soils and Foundations, Vol. 60, pp. 871–885, (2020).
8. Benjelloun, M., Bouferra, R., Ibouh, H., Jamin, F., Benessalah, I., and Arab, A., “Mechanical Behavior of Sand Mixed with Rubber Aggregates,” Applied Sciences, Vol. 11395, No.11, pp.1-19(2021).
9. Committee on Soil Dynamics of the Geotechnical Engineering Division., “Definition of Terms Related to Liquefaction,”Journal of the Geotechnical Engineering Division Volume, Vol. 104, No.9, pp. 1197–1200 (1978).
10. Gerard, B., and Vrettos, C., “Sand–tyre chips mixtures in undrained and drained cyclic triaxial tests,” Proceedings of the Institution of Civil Engineers – Ground Improvement, Vol. 175, No. 1, pp. 23-33(2022).
11. Imtiaz, A., “Laboratory study on properties of rubber soils,” JTRP Technical Report, Purdue University, West Lafayette, U.S.A., pp. 1-394(1993).
12. Lech, B., and Gotteland, P., “ Characteristics of Tyre Chips-Sand Mixtures from Triaxial Tests,” Archives of Hydro-Engineering and Environmental Mechanics, Vol. 54, No. 1, pp. 3–14(2007).
13. Maria, M.S., “Monotonic and Cyclic Behaviour of Sand-Tyre Chip (STCh) Mixtures,”Ph.D. Dissertation, Department of Engineering, University of Wollongong, New South Wales, Australia (2014).
14. Mashiri, S., Vinod, J.S., Sheikha, N., and Tsang, H.H., “Shear strength and dilatancy behaviour of sand–tyre chip mixtures,” Soils and Foundations, Vol. 55, No. 3, pp. 517–528, (2015).
15. Panu, P.,“Liquefaction of Sand-Type Chip Mixture,”Ph.D. Dissertation, Department of Civil and Structural Engineering, University of Sheffield, South Yorkshire, England (2009).
16. Rami, El.S., Youssef, A., and Hani, L., “Triaxial Testing on Saturated Mixtures Of Sand Granulated Rubber,”Proceedings of Geo-Congress, San Diego, California, United States of America, Paper No.9(2013)
17. Zornberg, J.G., Cabral, A.R., Viratjandr, C., “Behaviour of tire shred - Sand mixtures,” Canadian Geotechnical Journal, Vol. 41, No. 3, pp. 227-241, (2004)