跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曾千洧
Chien-wei Tseng
論文名稱: 以噴塗技術在不銹鋼基板上沉積氧化矽阻隔層應用於可撓式CIGS太陽電池之研究
Investigation of SiOx barrier layers deposited by spray technique for flexible CIGS solar cells on metallic substrates
指導教授: 利定東
Ting-tung Li
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 107
中文關鍵詞: 噴霧裂解法溶膠噴塗法阻隔層薄膜不銹鋼基板銅銦鎵硒太陽電池
外文關鍵詞: spray pyrolysis deposition, aerosol spraying, barriers, stainless steel substrate, CIGS solar cell
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用噴霧裂解法及溶膠噴塗法在不銹鋼基板上沉積SiOx阻隔層薄膜,實驗在阻隔層上依序沉積鉬背電極與CIGS吸收層。噴霧裂解法及溶膠噴塗法由於其製程成本低與操作簡單等優點,故近年來以此技術製備薄膜的技術受到重視。氧化矽絕緣層性質研究包含阻擋雜質擴散、微結構、成分、鍵結與電性絕緣分析等。實驗以AFM量測材料表面形貌,並藉由SEM、TEM及XRD觀察阻隔層材料微結構特徵、尺寸大小和殘留應力分析等。材料鍵結與元素分析使用XPS作進一步探討。實驗結果證實以溶膠噴塗製備氧化矽薄膜且厚度為200 nm時即可獲得極佳之阻隔層材料並同時達到可撓式CIGS太陽電池各項需求。


    In this study, SiOx layers were fabricated by spray pyrolysis deposition (SPD) and aerosol spraying as diffusion barriers between the stainless steel (SS) substrate (SUS430) and the molybdenum back contact layer in CuIn1-xGaxSe2 (CIGS) thin-film solar cells. SPD and aerosol spraying for SiOx layers are attractive processes for the deposition of thin films due to their low cost and controllable properties especially for solar cells on SS foils since a good barrier layer is required to prevent the Fe impurities (ions) defusing from SS substrate to the cells. The properties of SiOx barriers including thermal stability, microstructure content, electrical insulation and thickness of SiOx layers were investigated. The surface morphology and surface roughness were observed by scanning electron microscope and atomic force microscope. A transmission electron microscopy and X-ray diffractometer are adopted to measure the microstructural characteristics, grain size, and residual stresses of films. The chemical composition of the dielectric barriers was analyzed by X-ray photoelectron spectroscopy. The experimental results shows the specific thickness at 200 nm of SiOx layer will cause the absorber layer has the single chalcopyrite phase structure with (112) preferred orientation. The effects from the results revealed that the cells with a SiOx barrier layer fabricated by aerosol spraying provided a promising process in obtaining better CIGS cell performance.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 研究目的及方法 5 第二章 文獻整理及原理介紹 13 2-1 阻擋層(Barrier layer) 13 2-1-1噴塗法製備阻擋層薄膜 14 2-2 背電極(Back contact) 16 2-3 吸收層(Absorber layer) 16 第三章 實驗方法與設備 18 3-1 實驗流程及前驅物溶液 18 3-2 實驗步驟 19 3-2-1基板的製備 19 3-2-2絕緣層的製備 20 3-2-3 Mo背電極的製備 23 3-3 實驗設備及原理 23 3-3-1 X-ray繞射儀 (X-ray Diffractometer, XRD) 23 3-3-2表面輪廓儀(α-step) 24 3-3-3四點探針(Four point probe) 25 3-3-4原子力顯微鏡(Atomic force microscope) 25 3-3-5穿透式電子顯微鏡(Transmission electron microscope, TEM) 26 3-3-6光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 26 3-3-7外力撓曲測試 26 3-3-8光學顯微鏡(OM) 27 3-3-9二流體噴塗設備 27 第四章 結果與討論 30 4-1 噴霧熱裂解法及溶膠噴塗法製備氧化矽薄膜 30 4-1-1噴霧熱裂解法及溶膠噴塗法噴塗霧化參數 30 4-1-2噴霧熱裂解法製備氧化矽薄膜 30 4-1-3溶膠噴塗法製備氧化矽薄膜 39 4-2 XPS分析 42 4-2-1壓力式噴塗沉積技術製備氧化矽薄膜參數調變 42 4-2-2 TEOS高溫噴塗熱裂解(A製程) 43 4-2-3 TEOS高溫噴塗熱裂解(B製程) 46 4-2-4 TEOS/TES高溫噴塗熱裂解(C製程) 49 4-2-5 TEOS/TES高溫噴塗熱裂解(D製程) 52 4-2-6溶膠噴塗法製備氧化矽薄膜(A製程) 55 4-2-7溶膠噴塗法製備氧化矽薄膜(B製程) 59 4-3 氧化矽之微結構分析 63 4-3-1 TEM 63 4-3-2 XRD 65 4-4 原子力顯微鏡(AFM)對於SiOx之表面粗糙度分析 67 4-5 鐵離子雜質熱擴散分析 76 4-6 SiOx/SS之基板撓曲分析 79 4-7 殘留應力分析 80 4-7-1 Mo背電極依據噴霧熱裂解法及溶膠噴塗法製備不同厚度之絕緣層殘留應力分析 80 4-7-2 CIGS吸收層依據溶膠噴塗法製備不同厚度之絕緣層殘留應力分析 83 第五章 結論 86 參考文獻 88

    [1] T. M. Razykov et al., Vol. 85, pp. 1580–1608, 2011.
    [2] T. W. Zeng el al., Sol. Energy Mater. Sol. Cells, Vol. 93, pp. 952-957, 2009.
    [3] S. Y. Chuang et al., J. Mater. Chem., Vol. 19(31), pp. 5554-5560, 2009.
    [4] D. L. Staebler and C. R. Wronski, Appl. Phys. Lett., Vol. 31(4), pp. 292-294, 1977.
    [5] E. Janik and R. Triboulet, J. Phys. D: Appl. Phys., Vol. 16(12), pp. 2333-2340, 1983.
    [6] H. J. Moller, Semiconductors for solar cells, Artech House, Boston, 1993.
    [7] J. R. Woodyard and G.A. Landis, Sol. Cells, Vol. 31, pp. 297-329, 1991.
    [8] Y.C. Cheng, C.M. Yang, W.H. Lan, J.N. Yang and L.B. Chang, Jpn. J. Appl. Phys, Vol. 41, pp. 1386-1389, 2002.
    [9] T. Walter, R. Meaner, M. Ruckh, L. Kaser and H.W. Schock, Proc. 22nd IEEE Photovoltaic specialists’ Conf., Las Vegas. NK 1991, IEEE, New York, pp. 924, 1991.
    [10] I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B.
    To, and R. Noufi, Progress in Photovoltaics, 2008.
    [11] NREL, 2010 Solar Technologies Market Report, November 2011.
    [12] F. Kessler and D. Rudmann, Solar Energy, Vol. 77, pp.685–695, 2004.
    [13] Cited from “Steel-Rolling Technology Theory and Practice” by V.B. Ginzburg, pp. 522
    [14] Cited from “Steel-Rolling Technology Theory and Practice” by V.B. Ginzburg, pp. 523
    [15] S. Ueno, D. Matsuura, M. Komada et al, the 21st International Photovoltaic Science and Engineering Conference November 28th, 2011.
    [16] 賴建璋, “不鏽鋼表面電解拋光技術研究” 91年,元智大學.
    [17] ASM metal referece book, 1993.
    [18] K. Herz et al., Thin Solid Films, Vol. 431 –432, pp. 392–397, 2003.
    [19] R. Wuerz et al., “CIGS thin film solar cells on steel substrates”, Thin Solid Films, Vol. 517, pp. 2415, 2009.
    [20] J. H. Yun et al., Thin Solid Films, Vol. 515, pp. 5876–5879, 2007.
    [21] Shogo Ishizuka, Akimasa Yamada, Koji Matsubara, Paul Fons, Keiichiro Sakurai et al., Appl. Phys. Lett. Vol. 93, pp.124105, 2008.
    [22] A. Luque and S. Hegedus, Handbook of photovoltaic science and engineering, John Wiley & Sons, 2003.
    [23] K. Herz et al., Thin Solid Films, Vol. 403-404, pp. 384-389, 2002.
    [24] T. Satoh, Y. Hashimoto, S. Shimakawa, S. Hayashi, T. Negami, Solar Energy Materials & Solar cells, Vol. 75, pp. 65-71, 2003.
    [25] R. Wuerz, A. Eicke, M. Frankenfeld, F. Kessler, M. Powalla, P. Rogin, and O. Yazdani-Assl, Thin Solid Films, Vol. 517, pp. 2415–2418, 2009.
    [26] K. Herz et al., Thin Solid Films, Vol. 431-432, pp. 392-397, 2003.
    [27] L. Assmann, J.C. Bernède, A. Drici, C. Amory, E. Halgand, M. Morsli, Applied Surface Science, Vol. 246, pp. 159-166, 2005.
    [28] 楊德仁,〈太陽能電池材料》,初版,台北,五南書局,民國九十七年六月。
    [29] J. H. Scofield, A. Duda, D. Albin, B.L. Ballard, P.K. Predecki, Thin Solid Films, Vol. 260, pp. 26-31, 1995.
    [30] N. G. Dhere, Ankur A. Kadam, Sachin S. Kulkarni, Sachin M. Bet, Anant H. Jahagirdar, Solar Energy, Vol. 77, pp. 697-703, 2004.
    [31] R. Noufi, et al., Appl. Phy. Lett., Vol. 45, pp.668, 1984.
    [32] J. Nelson, the Physics of Solar Cells, 2003.
    [33] J. R. Sites, X. Liu, Solar Energy Materials and Solar Cells, Vol. 41/42, pp. 374, 1996.
    [34] D. L. Young et al., Prog. Photovolt: Res. Appl., Vol. 11, pp. 538, 2003.
    [35] J. L. Vossen, Physics of Thin Film, Vol. 9, pp. 1-64, 1977.
    [36] 林威廷,“掺鋁氧化鋅與金屬鉬的製備及特性研究”,長庚大學電子工程學系碩士論文, 2009.
    [37] 徐賓鴻,“可撓式CuInSe2薄膜太陽能電池之研製”, 中山大學材料科學研究所碩士論文, 2008.
    [38] R. R. Chamberlin and J. S. Skarman, Journal of the Electrochemical Society, Vol. 113, pp.86-89, 1966.
    [39] A. Nakaruk and C. C. Sorrell, Journal of Coatings Technology and Research, Vol. 7, pp. 665-676, 2010.
    [40] J. C. Viguie and J. Spitz, Journal of the Electrochemical Society, Vol. 122, pp. 585-588, 1975.
    [41] D. Manno, G. Micocci, R. Rella, A. Serra, A. Taurino , A. Tepore, J. Appl. Phys., Vol. 82, pp. 54–59,1997.
    [42] Park, MH, Jang, YJ, Sung-Suh, HM, Sung, MM, Langmuir, Vol. 20, pp. 2257–2260,2004.
    [43] P. S. Shinde, C. H. Bhosale, J. Anal. Appl. Pyrolysis, Vol. 82, pp. 83–88, 2008.
    [44] J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, A. J. Heeger, Adv. Mater., Vol. 18, pp. 572–576, 2006.
    [45] M. Hemissi, H. Amardjia-Adnani, J. C. Plenet, Curr. Appl. Phys., Vol. 9, pp. 717–721, 2009.
    [46] H. P. Deshmukh, P. S. Shinde, P. S. Patil, Mater. Sci. Eng. B, Vol. 130, pp. 220–227, 2006.
    [47] H. Z. Abdullah, C. C. Sorrell, Mater. Sci. Forum, Vol. 561–565, pp. 2159–2162, 2007.
    [48] G. K. Mor, O. K. Varghese, M. Paulose, K. G. Ong, C. A. Grimes, Thin Solid Films, Vol. 496, pp. 42–48, 2006.
    [49] M. Walczak, E. L. Papadopoulou, M. Sanz, A. Manousaki, J. F. Marco, Castillejo, M, Appl. Surf. Sci., Vol. 255, pp. 5267–5270, 2009.
    [50] Weng et al., J. Cryst. Growth, Vol. 310, pp. 545–550, 2008.
    [51] H. Z. Abdullah, C. C. Sorrell, Mater. Sci. Forum, Vol. 561–565, pp. 2163–2166, 2007.
    [52] R. Rohanizadeh, M. Al-Sadeq, R. Z. LeGeros, J. Biomed. Mater.Res. A, Vol. 714, pp. 343–352, 2004.
    [53] I. Seigo, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Pe´chy, M. Gratzel, Prog. Photovoltaics Res. Appl., Vol. 15, pp. 603–612, 2007.
    [54] R. Vaßen, Z. Yi, H. Kaßner, D. Stover, Surf.Coat. Technol., Vol. 203, pp. 2146–2149, 2009.
    [55] 汪建民,材料分析,中國材料科學學會,民國八十七年。
    [56] T. Li, G. Borges, O. Melroy and J. G. Gordon II, IBM Research Report, 1987
    [57] I. W. Lenggoro, Journal of Materials Research, Vol. 15(3), pp. 733-743, 2000.
    [58] D. Perednis, Swiss Federal Institute of Technology Zurich – Eidgenössische Technische Hochschule (ETH) Zürich, 2003.
    [59] ]M. Giorgio, B. Elise, K. Anton, and S. Steinhauer, health and environment group at the Austrian Institute of Technology (AIT), 2012.
    [60] T. P. Nguyen and S. Lefrant, J. Phys.: Condens. Matter l, pp. 5197-5204, 1989.
    [61] M. Anwar, C. A. Hogarth, R. Bulpett, J. Mater. Sci., Vol. 25, pp. 1784, 1990.
    [62] R. Alfonsetti, L. Lozzi, M. Passacantando, P. Picozzi and S. Santucci, Applied Surface Science, Vol. 70/71, pp. 222-225, 1993.
    [63] T. Hagio, A. Takase, S. Umebayashi, J. Mater. Sci. Lett., Vol. 11, pp. 878, 1992.
    [64] W. K. Batchelor, I. L. Repins, J. Schaefer, M. E. Beck, Solar Energy Materials and Solar Cells, Vol. 83, pp. 67-80, 2004.
    [65] U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen and E.J. Mittemeijer, J. Appl. Cryst. , Vol. 38, pp. 1-29, 2005.
    [66] P. Pant, K. W. Schwarz, et al. Acta Materialia, Vol. 51, pp. 3243-3258, 2003.

    QR CODE
    :::