| 研究生: |
駱帆莎 Vinsa Kharisma Rofiqo Sari |
|---|---|
| 論文名稱: |
用納米粒子提高 K-CoCo 和 Na-FeFe 普魯士藍二次鋰離子電池的效率 Enhanced Efficiency of K-CoCo and Na-FeFe Prussian Blue Secondary Lithium-Ion Battery with Nanoparticles |
| 指導教授: |
李文獻
Wen-Hsien Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 普魯士藍 |
| 外文關鍵詞: | Prussian blue |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,普魯士藍被用作充電電池的正極材料。普魯士藍有兩種獨立的氧化還原過渡金屬元素。可儲存鋰離子,進行電池充放電反應,且易於合成,成本低,壽命長,具有高功率特性。 K-CoCo和Na-FeFe普魯士藍納米粒子採用共沉澱法製備,K-CoCo採用50℃共沉澱溶液製備。 Na-FeFe 分別在 85°C 下通過共沉澱溶液製備。使用 X 射線衍射分析樣品的晶體結構和化學成分。 50℃共沉澱溶液製備的K-CoCo樣品粒徑為41 nm; 85℃共沉澱溶液製備的Na-FeFe樣品粒徑為59nm。在極片K-CoCo的生產過程中添加了鎳和銦兩種納米顆粒。同時,在正極片Na-FeFe的製作過程中添加鎳和銀兩種納米顆粒,將納米顆粒和普魯士藍混合均勻,製成電池極片。將41 nm K-CoCo普魯士藍和59 nm Na-FeFe普魯士藍製成電池,並討論了電池的充放電循環效率。分別在 41 nm K-CoCo 和 59 nm Na-FeFe 中添加鎳、銀和銦納米顆粒,以測試添加納米顆粒的電池的充放電循環效率。 59 nm Na-FeFe 添加劑添加不同比例(10%、25%、35%)的鎳和銀納米顆粒電池以不同電流 0.03 mA 和 0.015 mA 充放電,添加 41 nm K-CoCo 13% 的納米粒子在不同電流(0.03 mA、0.015 mA 和 0.007 mA)下循環測試
In recent years, Prussian blue was used as a cathode material for rechargeable batteries. Prussian blue has two independent redox transition metal elements. It can store lithium ions, perform battery charge and discharge reactions, and is easy to synthesize, Low cost, has a long life, and has high power characteristics. K-CoCo & Na-FeFe Prussian blue nanoparticle was prepared by co-precipitation method, and K-CoCo was prepared by co-precipitation solution at 50°C. Na-FeFe was prepared by co-precipitation solution at 85°C, respectively. Use X-ray diffraction to analyze the crystal structure and chemical composition of the sample. The K-CoCo sample prepared by the 50°C co-precipitation solution has a particle size of 41 nm; the Na-FeFe sample prepared by the 85°C co-precipitation solution has a particle size of 59 nm. Two kinds of nanoparticles of nickel & indium are added during the production of the pole piece K-CoCo. Meanwhile, two kinds of nanoparticles of nickel & silver are added during the production of the positive pole piece Na-FeFe the nanoparticles and Prussian blue are uniformly mixed to produce the battery pole piece. The 41 nm K-CoCo Prussian blue and 59 nm Na-FeFe Prussian blue were made into batteries, and the battery charge-discharge cycle efficiency was discussed. The 41 nm K-CoCo and 59 nm Na-FeFe were added with nickel, silver, and indium nanoparticles, respectively, to test the charge-discharge cycle efficiency of the battery with the added nanoparticles. The 59 nm Na-FeFe add with different percentages of nanoparticles (10%, 25%, 35%) of nickel and silver nanoparticle batteries were charged and discharged with different currents 0.03 mA & 0.015 mA, and the 41 nm K-CoCo the added 13% nanoparticles were cyclically tested at different currents (0.03 mA, 0.015 mA & 0.007 mA)
Reference Chapter 1
1. Buser, H. J., Schwarzenbach, la D., Petter, I. W., & Ludi, A. (1977). The Crystal Structure of Prussian Blue: Fe4[Fe(CN)6]3. xH20. In Acta Crystallogr., Sect. A (Vol. 16, Issue 11). Kynoch Press.
https://doi.org/10.1021/ic50177a008
2. Hurlbutt, K., Wheeler, S., Capone, I., & Pasta, M. (2018). Prussian Blue Analogs as Battery Materials. In Joule (Vol. 2, Issue 10, pp. 1950–1960). Cell Press. https://doi.org/10.1016/j.joule.2018.07.017
3. Robin, M. B. (1962). ELECTRONIC CONFIGURATIONS OF PRUSSIAN BLUE 337 The Color and Electronic Configurations of Prussian Blue1 (Vol. 1, Issue 2). https://doi.org/10.1021/ic50002a028
Reference Chapter 4 :
1. Nie, P., Shen, L., Luo, H., Ding, B., Xu, G., Wang, J., & Zhang, X. (2014). Prussian blue analogues: a new class of anode materials for lithium ion batteries. Journal of Materials Chemistry, 2(16), 5852–5857.
https://pubs.rsc.org/en/content/articlelanding/2014/TA/C4TA00062E
2. Tang, Wan & Ma, Zi-Feng & Peng, Fangwei & Yang, Yang & Feng, Fan & Liao, Xiao-Zhen & He, Yu-Shi & Ma, Zi-Feng & Chen, Zonghai & Ren, Yang. (2018). Electrochemical Performance of NaFeFe(CN)6 Prepared by Solid Reaction for Sodium Ion Batteries. Journal of The Electrochemical Society. 165. A3910-A3917. https://iopscience.iop.org/article/10.1149/2.0701816jes.
3. Lim, Cheryldine & Wang, Tian & Ong, Evon & Tan, Zhi-Kuang. (2020). High‐Capacity Sodium–Prussian Blue Rechargeable Battery through Chelation‐Induced Nano‐Porosity. Advanced Materials Interfaces. 7. 10.1002/admi.202000853.
https://doi.org/10.1002/admi.202000853
4. Gantenbein S, Schönleber M, Weiss M, Ivers-Tiffée E. Capacity Fade in Lithium-Ion Batteries and Cyclic Aging over Various State-of-Charge Ranges. Sustainability. 2019; 11(23):6697.
https://doi.org/10.3390/su11236697
5. Shen, L., Wang, Z. and Chen, L. (2014), Prussian Blues as a Cathode Material for Lithium Ion Batteries. Chem. Eur. J., 20: 12559-12562.