跳到主要內容

簡易檢索 / 詳目顯示

研究生: 盧翔煒
Hsiang-Wei Lu
論文名稱: 無線網路頻道環境之自我時間控制封包排程機制
Channel Condition aware Self-Clocked Packet Scheduling for Wireless Networks
指導教授: 吳曉光
Eric HsiaoKuang Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 95
語文別: 英文
論文頁數: 53
中文關鍵詞: 無線網路公平演算法
外文關鍵詞: wireless scheduler, wireless fair queueing
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在無線網路下,移動式主機會因為所在的位置而遭受不同的頻道錯誤,而無法有效地傳送與接受封包,因此,對於有線網路上的封包公平佇列演算法並不能直接應用到無線網路。一般而言,在無線網路上,當移動式主機遭受頻道錯誤時,封包公平佇列演算法會保留資料流的虛擬時間。這能使得移動式主機在能傳送資料時,能擁有較高的優先權。同時,系統會開始對移動式主機補償他所失去的服務。這也許會使得長期處於無法傳送資料的移動式主機佔據整個共享頻道及影響其它移動式主機的資料傳送。
    在此,我們提出了頻道條件自我時間控制封包演算法。這演算法除了能克服上述問題同時能達成以下目標(1)在訊號無錯誤的系統中,提供延遲與吞吐量的保證(2)對於無訊號錯誤的移動式主機,提供瞬時的公平性(3)在可能發生頻道錯誤的系統下,保持傳輸公平性(4)對無頻道錯誤的移動式主機,提供延遲穩定的服務品質。我們的排程演算法是建立在SFQ資源調度演算法上,當移動式主機預測到下次傳送封包時會發生頻道錯誤而無法正常的接收資料,移動式主機的資料流會重設它的虛擬時間,以爭取下次傳送資料的機會。


    Since mobile hosts suffer from bursty and location-dependent channel errors in wireless networks, Packet Fair Queueing algorithm in wireline networks cannot be applied directly to wireless network. Generally, fair scheduler in wireless network retains virtual time of flow when the flow encounters channel errors. This results that the flow has higher priority when it exits from errors. And the system can compensate the lost service for the flow. This causes that the lagging flows capture the share channel and effect queue delay of flows perceiving clean channel.
    In this paper, we present Channel-condition Self-Clocked Packet Scheduling. This algorithm can address the problem and achieve these goals (1) delay and throughput guarantees in error-free environment (2) short-term fairness among flows perceiving error-free (3) long-term fairness for error system (4) steady jitter for flows perceiving error-free. Our algorithm is based on Start-time Fair Queueing and the virtual time of flows is reset to contend for forwarding its packet at next time when errors happen for the flow.

    Chapter 1. Introduction ............................................................................. 1 1-1. Fairness....................................................................................... 3 1-2. Network Model ........................................................................... 4 1-3. Motivation................................................................................... 4 1-4. Thesis Organization .................................................................... 5 Chapter 2. Related Work........................................................................... 6 2-1. Fluid Fair Queueing and Packet Fair Queueing ........................... 6 2-2. Wireless Fair Queueing............................................................... 7 2-2-1. Idealized Wireless Fair Queueing......................................... 8 2-2-2. Wireless Packet Scheduling.................................................. 9 2-2-3. Channel-Condition Independent Fair Queueing.................. 10 2-2-4. Server Based Fairness Approach ........................................ 11 2-2-5. Wireless General Processor Sharing ................................... 12 Chapter 3. Proposed Scheme................................................................... 14 3-1. Problem Description.................................................................. 14 3-1-1. Capture channel problem.................................................... 14 3-1-2. Unsteady jitter problem...................................................... 15 3-2. Channel-condition Selfed-Clock Packet Scheduling.................. 16 3-2-1. Basic idea and Start-time Fair Queueing............................. 16 3-2-2. Detailed Algorithm............................................................. 18 3-2-3. Delay Guarantees ............................................................... 23 Chapter 4. Simulation Results ................................................................. 27 4-1. Delay Guarantees and Fairness in error-free system.................. 28 4-2. Long-term Fairness ................................................................... 30 4-3. Queue delay comparison ........................................................... 31 4-4. Steady jitter ............................................................................... 33 Chapter 5. Conclusions and Future works ............................................... 38 References …………………………………………………………………40

    [1]P.Bhagwat, P. Bhattacharya, A. Krishma and S. Tripathi, “Enhancing throughput over wireless LANs using channel state dependent packet scheduling”, in IEEE INFOCOM’96, April 1996.
    [2]S. Lu, V. Bharghavan and R. Srikant, “Fair scheduling in wireless packet networks”, in ACM SIGCOMM’97, August 1997.
    [3]M. Srivastava, C. Fragouli and V. Sivaraman, “Controlled multimedia wireless link sharing via enhanced class-based queueing with channel-state-dependent packet scheduling”, in IEEE INFOCOM’98, March 1998.
    [4]T.S. Ng, I. Stoica and H.Zhang, “Packet fair queueing algorithms for wireless networks with location-dependent errors”, in IEEE INFOCOM’98, March 1998.
    [5]P. Ramanathan and P. Agrawal, “Adapting packet fair queueing algorithms to wireless networks”, in ACM MOBICOM’98, October 1998.
    [6]S. Lu, T. Nandagopal and V. Bharghavan, “Fair scheduling in wireless packet networks”, in ACM MOBICOM’98, October 1997.
    [7]P. Goyal, H.M. Vin and H. Chen, “Start-time Fair Queueing: A scheduling algorithm for integrated service access”, ACM SIGCOMM’96, August 1996.
    [8]M.R. Jeon, H. Morikawa and T. Aoyama, “Fair scheduling algorithm for wireless packet networks”, 1999 International Conference on Parallel Processing Workshops, September 1999
    [9]A. Parekh and R. Gallager, “A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks: The Single-Node Case”, IEEE/ACM Trans. on Networking, 1(3):344-357, June 1993
    [10]Eric H.K. Wu, H.T. Lai, M.F. Tsai and C.F. Chou, ”Low Latency and Efficient Packet Scheduling for Streaming Applications”, IEEE ICC 2004, June 2004
    [11]Ahmed K. F. Khattab and Khaled M. F. Elsayed, “Channel-quality dependent earliest deadline due fair scheduling schemes for wireless multimedia networks”, ACM Special Interest Group on Simulation and Modeling(SIGSIM), 2004
    [12]M. Andrews, K. Kumaran, K. Ramanan, A.Stolyar, P. Whiting and R. Vijayakumar, ”Providing quality of service over a shared wireless link”, Communications Magazine IEEE, Feb 2001
    [13]P. Lin, B. Benssou, Q.L. Ding, and K.C. Chua, “CS-WFQ: a wireless fair scheduling algorithm for error-prone wireless channels”, Computer Communications and Networks, 2000. Proceedings. Ninth International Conference on, 2000.
    [14]T. Nandagopal, S. Lu, and V. Bharghavan, “A Unified Architecture for the Design and Evaluation of Wireless Fair Queueing Algorithms”, Proc, ACM MobiCom conf., Aug. 1999
    [15]NS-2 network simulator. LBL [Online], Available: http://www.mash.cs.berkeley.edu/ns
    [16]H. Zhu and G. Cao, “On improving service differentiation under bursty data traffic in wireless networks”, In Proc. IEEE INFOCOM, 2004
    [17]T. E. Kolding, F. Frederiksen and P. E. Mogensen, “Performance Aspects of WCDMA System with High Speed Downlink Packet Access (HSDPA)”, in proceeding of 56th IEEE Vehicular Technology Conference (VTC), vol. 1, Vancouver, British Columbia, Canada, Sepember 2002, pp.477-481.
    [18]T. E. Kolding, “Link and System Performance Aspects of Proportional Fair Packet Scheduling in WCDMA/HSDPA”, IEEE Proc. Vehicular Technology Conference, pp. 1717-1722, September 2003
    [19]S. Shakkottai and R. Srikant, “Scheduling real-time traffic with deadlines over a wireless channel”, Wireless Networks, 2002
    [20]H. Shao, C. Shen, D. Gu, J. Zhang and P. Orlik, “Dynamic resource control for high-speed downlink packet access wireless channel”, Proceedings of the International Conference on Distributed Computing Systems Workshop (ICDCSW), Rhode island, USA, 2003
    [21]Li Wang, Yu-Kwong Kwok, Wing-Cheong Lau and Vincent K. N. Lau, “Channel Capacity Fair Queueing in Wireless Networks: Issues and A New Algorithm”, ICC 2002, April, 2002, New York, U.S.A
    [22]W.S. Jeon, D. G. Jeong and B. Kim, “Packet scheduler for mobile internet services using high speed downlink packet access”, IEEE Transactions on Wireless Communications, 3(5):1789-1801, Sept. 2004.
    [23]H. Fattah and C. Leung, “An Overview of Scheduling Algorithms in Wireless Multimedia Networks”, IEEE Wireless , vol. 9, no. 5, Oct. 2002, pp. 76-83
    [24]P. Ameiqeiras, J. Wigard and P. Mogensen, “Performance of the M-LWDF scheduling algorithm for streaming services in HSDPA”, Vehicular Technology Conference, 2004. VTC2004-Fall. 2004 IEEE 60th, Sept. 2004
    [25]M. Lundevall, B. Olin, J. Olsson, J. Eriksson and F. Eng, “Streaming Applications over HSDPA in Mixed Service Scenarios”, IEEE Proc. VTC-2004, Fall, Los Angeles, USA, September 2004
    [26]S. Manistis, E. Nikolouzou and I. Vemieris, “QoS issues in the converged 3G wireless and wired networks”, IEEE Commun. Mag., vol. 40, pp. 44-53, Aug. 2002.
    [27]S. Abedi, “Efficient radio resource management for wireless multimedia communications: a multidimensional QoS-Based packet scheduler”, Wireless Communications, IEEE Transactions on, Nov. 2005
    [28]L. Xu, X. Shen and J. W. Mark, “Dynamic bandwidth allocation with fair scheduling for WCDMA system”, IEEE Wireless Commun., vol. 9, pp. 26-32, Apr. 2002.
    [29]P. Ameiqeiras, J. Wiqard and P. Mogensen, “Performance of packet scheduling methods with different degree of fairness in HSDPA”, VTC2004-Fall, Sept. 2004
    [30]3GPP Technical Report 25.848, version 4.0.0 Physical layer aspects of UTRA High Speed Downlink Packet Access, March 2001
    [31]UTRA High Speed Downlink Packet Access; Overall Description (Release 5), Sept. 2001. 3GPP, 3G TR25.308 V5.0.0

    QR CODE
    :::