跳到主要內容

簡易檢索 / 詳目顯示

研究生: 莊文榮
Wen-Jung Chuang
論文名稱: 吸光區累崩區分離的累崩光二極體
Separated Absorption Multiplication Avalanche Photodiode
指導教授: 洪志旺
Jyh-Wong Hong
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 63
中文關鍵詞: 累崩光二極體超晶格結構分離非晶質
外文關鍵詞: avalanche, photodiode, superlattice, separate, amorphous
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分為兩個主要部份。首先,設計一個與一般雙載子接面電晶體製程相容的非晶矽/單晶矽質吸光區累崩區分離的累崩光二極體(SAM-APD),並且利用半導體製程模擬軟體MEDICI與TSUPREM-4,計算元件特性和製程參數。最後將模擬結果實際應用於元件製程上,並完成元件的製作。
    另一完成的研究主題是分別在非晶質超晶格結構(superlattice)中,加入p-i-a-SiC、p-i-n-a-SiC或p-i(a-SiC)-i-n(a-Si)非晶質複層的非晶質吸光區累崩區分離的超晶格累崩光二極體(SAM-SAPD)。這些元件都有相當高的光增益(optical gain),其中加入p-i(a-SiC)-i-n(a-Si)非晶質薄膜的元件具有最高的光增益。實驗結果顯示,利用在累增區中加入高電場及傳導帶不連續等區域所完成的元件具有較佳的光電特性。



    Then three kinds of amorphous separated absorption multiplication superlattice avalamche photodiode (SAM-SAPD), each with additional p-n-a-SiC, p-i-n-a-SiC, or p-i(a-SiC)-i-n(a-Si) amorphous layers in substage of superlattice (SL), had been designed and fabricated successfully. These device had rather high optical gain, and the one with additional p-i(a-SiC)-i-n(a-Si) amorphous layers in substage of SL had the highest optical gain. The results of this study indicated that using high electric-field and conduction band-edge discontinuity in multiplication region of SAM-SAPD would improve its performance.

    Abstract ................................................ I Table Captions ............................................... IV Figure Captions ............................................... V Chapter 1 Introduction ...............................................1 Chapter 2 Amorphous Silicon/Crystalline Silicon Separated Absorption Multiplication Avalanche Photodiode (SAMAPD) ......................................3 2.1 Theory of Device Operation ...............3 2.2 Fabrication Process ................. 8 2.2.1 Design Considerations ...............8 2.2.2 Fabrication Processes ................9 2.3 Simulation .................25 2.4 Measurement Techniques .................32 2.4.1 Optical Band-gap .................32 2.4.2 Responsivity .................32 2.5 Experimental Results .................36 Chapter 3 Amorphous Separated Absorption Multiplication Superlattice Avalanche Photodiode (SAM-SAPD).....40 3.1 Theory and Device Operation .................40 3.2 Fabrication Processes .................44 3.2.1 Design Considerations .................44 3.2.2 Fabrication Processes .................44 3.3 Experimental Results .................52 Chapter 4 Conclusions .................58 References .................59 Table Captions Table 2-1 A list of the eight masks used to fabricate the SAM-APD. 12 Table 2-2 Specifications of the SAM-APD. .................17 Table 2-3 Deposition conditions and Eopt’s of various amorphous films. Table 2-4 The deposition conditions of metal films .........24 Table 3-1 Deposition conditions and Eopt’s of various amorphous films. .................51 Figure Captions Fig. 2-1The schematic cross-section of a SAM-APD ............6 Fig. 2-2Schematic energy-band diagram of a SAM-APD under reverse-bias.........................................7 Fig. 2-3The process flow-chart of a SAM-APD................15 Fig. 2-4The PECVD system for depositing amorphous film.....................................................16 Fig. 2-5The annealing and drive-in conditions of the Buried layer.....................................................18 Fig. 2-6The annealing and drive-in conditions of the Down-ISO regions............................................19 Fig. 2-7The annealing and drive-in conditions of the Top-ISO regions............................................20 Fig. 2-8The annealing and drive-in conditions of the N+-regions.....................................................21 Fig. 2-9The annealing and drive-in conditions of the P+-regions.....................................................22 Fig. 2-10(a) The potential contours of the SAM-APD device, and....................................................27 (b) the total current vectors of the SAM-APD device.....................................................27 Fig. 2-11(a) The p+-region doping profiles and junction depths for various implanted doses, and (b) the device current densities versus reverse-biasd voltage for various doses of P+-region..........................28 Fig. 2-12The device current densities versus reverse-biasd voltage for various depths of P+-region......................29 Fig. 2-13All of the doping concentration profiles for the device.....................................................29 Fig. 2-14(a) The incident light pulse, and...............30 (b) the device transient output photo-current.....................................................30 Fig. 2-15The normalized device gain versus frequency of incident light pulse.........................................31 Fig. 2-16The setup of UV/VIS/NIR spectrophotometer for measuring optical band-gap of amorphous film..........34 Fig. 2-17The setup for measuring device responsivity.......35 Fig. 2-18(a) The photo and dark I-V curves of Device 1 under reverse-bias, and (b) the optical gain of Device 1................37 Fig. 2-19(a) The photo and dark I-V curves of Device 2 under reverse-bias, and (b) the optical gain of Device 2................38 Fig. 2-18(a) The photo and dark I-V curves of Device 3 under reverse-bias, and (b) the optical gain of Device 3................39 Fig. 3-1The schematic cross-section of an amorphous SAM-SAPD [24]...........................................42 Fig. 3-2Schematic energy-band diagram of an amorphous SAM-SAPD under reverse-bias [24].........................43 Fig. 3-3The schematic cross-section along with the gas flow-rates for the amorphous SAM-SAPD with additional p-n amorphous layers in substage of SL (Device A)................47 Fig. 3-4The schematic cross-section along with the gas flow-rates for the amorphous SAM-SAPD with additional p-i-n amorphous layers in substage of SL (Device B)................48 Fig. 3-5The schematic cross-section along with the gas flow-rates for the amorphous SAM-SAPD with additional p-i-i-n amorphous layers in substage of SL (Device C)................49 Fig. 3-6Variations of optical gap of i-a- SiC:H with used carbon hydride gas fractions (C/(C+Si)) in C2H2-SiH4, C2H4-SiH4 and CH4-SiH4 gas mixtures [25].......50 Fig. 3-7(a) The photo and dark I-V curves of Device A under reverse-bias, and (b) the optical gain of Device A.................53 Fig. 3-8(a) The photo and dark I-V curves of Device B under reverse-bias, and (b) the optical gain of Device B.................54 Fig. 3-9(a) The photo and dark I-V curves of Device C under reverse-bias, and (b) the optical gain of Device C.................55 Fig. 3-10(a) The photo and dark I-V curves of Device D under reverse-bias, and (b) the optical gain of Device D.................56 Fig. 3-11A comparison of the optical gains for various amorphous SAM-SAPDs...........................................57

    [1]M. C. Teich, K. Matsuo, and B. E. A. Saleh, "Counting distributions and error probabilities for optical receivers incorporating superlattice avalanche photodiodes," IEEE Trans. Electron devices, vol. ED-33, pp. 1475-1488, 1986.
    [2]R. J. McIntyre," Multiplication noise in uniform avalanche diodes," IEEE Trans. Electron Devices, vol. ED-13, pp. 164-168, 1966.
    [3]G. E. Bulman, V. M. Robbins, K. F. Brennan, K. Hess, and G. E. Stillman, "Experimental determination of impact ionization coefficients in (100) GaAs," IEEE Electron Device Lett., vol. EDL-4, pp. 181-185, 1983.
    [4]K. Brennan, "Theory of electron and hole impact ionization in quantum well and staircase superlattice avalanche photodiode structures," IEEE Trans. Electron Devices, vol. ED-32, pp. 2197-2205, 1985.
    [5]H. Blauvelt, S. Margalit, and A. Yariv, "Single-carrier-type dominated impact ionisation in multilayer structures," Electron. Lett., vol. 18, pp. 375-376, 1982.
    [6]K. Brennan, "Theory of the GaInAs/A1InAs-doped quantum well APD: A new low-noise solid-state photodetector for lightwave communication systems, " IEEE Trans. Electron Devices, vol. ED-33, 1653-1695, 1986.
    [7]K. Brennan, "Theory of the doped quantum well superlattice APD: A new solid state photomultiplier," IEEE J. Quantum Electron., vol. QE-22, pp. 1999-2016, 1986.
    [8]K. Brennan, "The pn junction quantum well APD: A new solid state Photodetector for lightwave communications systems and on-chip detector applications," IEEE Trans. Electron Devices, vol. ED-34, pp. 782-792, 1987.
    [9]K. Brennan, "The p-n heterojunction quantum well APD: A new high-gain low-noise high-speed photodetector suitable for lightwave communications and digital applications," IEEE Trans. Electron Devices, vol. ED-34, pp. 793-803, 1987.
    [10]K. Brennan, "Optimization and modeling of avalanche photodiode structures: Application to a new class of superlattice photodetectors, the p-i-n, p-n homojunction, and p-n heterojunction .APD''s," IEEE Trans. Electron Devices, vol. ED-34, pp. 1658--1669, 1987.
    [11]F. Capasso, "Physics of avalanche photodiodes," in Semiconductors and Semimetals, R. K. Willardson and A. C. Beer, Eds. Lightwave Communications Technology, W. T. Tsang, Ed. New York:Academic, 1985, vol. 22, part D, pp. 1-172.
    [12]F. Osaka, T. Mikawa and O. Wada, “ Electron and hole impact ionization rates in InP/Ga0.47In0.53As superlattice,” IEEE J. Quantum Electron., vol. QE-22, pp. 1986-1991,1996.
    [13]K. Brennan, K. Hess and F. Capasso, “Physics of the enhancement of impact ionization in multiquantum well structures” Appl. Phys. Lett., vol. 50, no. 26, pp. 1897-1899, 1987.
    [14]W. Maes, K. De Meyer and R. Van Overstraeten, “Impact ionization in silicon: a review and update,” Solid-State Electronics, vol. 33, no. 6, pp. 705-718, 1990.
    [15]K. M. Van Vliet, and L. M. Rucker, "Theory of carrier multiplication and noise in avalanche devices - Part I: One-carrier processes," IEEE Trans. Electron Devices, vol. ED-26, pp. 746-751, 1979.
    [16]K. M. Van Vliet, A. Friedmann, and L. M. Rucker, "Theory of carrier multiplication and noise in avalanche devices - Part II: Two-carrier processes," IEEE Trans. Electron Devices, vol. ED-26, pp. 752-764, 1979.
    [17]R. S. Fyath, J. J. O''Reilly, "Multilayer APDs producing up to two impact ionisations per carrier per stage: Optical receiver performance analysis," IEE Proc., vol. 135, Pt. J, pp. 101-105, 1988.
    [18]J. N. Hollenhorst, "A theory of multiplication noise," IEEE Trans. Electron Devices. vol. 37, pp. 781-788, 1990.
    [19]J. Tanc, Amorphous and Liquid Semiconductors, chap. 5, Plenum Press, pp. 175, 1974.
    [20]G. E. Stillman, V. M. Robbins, and N. Tabatabaie, “III-V compound semi-conductor devices: optical detectors,” IEEE trans. Electron Devices, vol. ED-31, pp. 1643-1655, 1984.
    [21]R. Chin, N. Holonyak, G. E. Stillman, J.Y. Tang, and K. Hess, “Impact ionization in multilayered heterojunction structures,” Electron. Lett., vol. 16, pp. 467-469, 1980.
    [22]F. Capasso, W. T. Tsang, A. L. Hutchinson, and G. P. Williams, “Enhancement of electron impact ionization in superlattice: A new avalanche photodiode with large ionization rates ratio,” Appl. Phys. Lett., vol. 40, pp. 38-40, 1982.
    [23]F. Capasso, W. T. Tsang, and G. F. Williams, “Staircase solid state photomultipliers and avalanche photodiodes with enhanced ionization rate ratio,” IEEE Trans. Electron Devices, vol. ED-30, pp. 381-390, 1982.
    [24]J. W. Hong, W. L. Laih, Y. W. Chen, Y. K. Fang, C. Y. Chang and J. Gong, "Optical and noise characteristics of amorphous Si/SiC superlattice reach-through avalanche photodiode," IEEE Trans. Electron Devices, vol. ED-37, no.8, pp.1804-1809, 1990.
    [25]D. Kruangam, T. Endo, M. Deguchi, W. Guang-Pu, H. Okamoto, and Y. Hamakawa "Amorphous Silicon-Carbide Thin-Film Light Emitting Diode", Optoelectronics Devices and Technologies, Vol. 1, No. 1, p. 67-84, 1986.
    [26]Rong-Hwei Yeh, "Green-Blue Porous Silicon Light-Emitting Diode", Master thesis, Institute of Electrical Engineering, National Central University, Chung-Li, Taiwan, Republic of China, 1996.
    [27]Yung-Hung Wu, "Optoelectronic Characteristics of a-SiC:H-based P-I-N Thin-Film LEDs Having a Thin Mo Buffer Layer in Contact with p-a-Si:H", Master thesis, Institute of Electrical Engineering, National Central University, Chung-Li, Taiwan, Republic of China, 1996.
    [28]K. Tanaka, Glow-Discharge Hydrogenated Amorphous Silicon, Chap. 3, KTK Scientific Publishers, 1989.

    QR CODE
    :::