| 研究生: |
楊哲勛 Jer-Shiun Yang |
|---|---|
| 論文名稱: |
二氧化矽包覆鈣鈦礦量子點薄膜 暨擴散粒子之研究 The Study of Silica Coated Perovskite Quantum Dot Emission Film and Diffractive Particles |
| 指導教授: |
詹佳樺
Chia-Hua Chan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 鈣鈦礦量子點 、APTES 、二氧化矽奈米球 、量子點薄膜 |
| 外文關鍵詞: | Perovskite quantum dots, APTES, Silica nano sphere, Quantum dots thin film |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用溶劑過飽和法,能夠於大氣環境中簡單、快速的合成出具高發光效率的全無機銫鉛溴鈣鈦礦量子點;並使用3-氨基丙基三乙氧基矽烷(APTES)作為配體,取代有機長碳鏈分子,改善做成元件後,有機長碳鏈分子會殘留於表面以及影響元件特性的問題,並利用APTES本身有機矽烷的特性,在鈣鈦礦量子點外形成二氧化矽保護層,有效阻止量子點受環境因素影響。
本研究透過嘗試不同的鉛與APTES莫耳比尋找最好的發光效率,我們發現在鉛與APTES莫耳比為1:1.5時會有最佳的光激量子效率(Photoluminescence quantum yield, PLQY)為58%。此外利用有機矽烷本身的特性,搭配實驗室自行合成之二氧化矽奈米球,使受二氧化矽包覆的鈣鈦礦量子點附著於奈米球上,透過奈米球的光學特性形成擴散粒子(Diffractive particles, DP),提高量子點接收激發光子的機率。以量子點與奈米球重量比為1:2.17所形成的擴散粒子最高發光效率可達81%,最終並以此擴散粒子搭配聚甲基丙烯酸甲酯(PMMA)所形成的發光擴散薄膜(Perovskite quantum dots diffusion film, PQDF)發光效率為65%。
自行合成的發光擴散薄膜具有良好的發光效率以及發光特性,且薄膜具有良好的可塑性可應用於多種元件上,利用此方法所做成之薄膜具有成為下一代彩色濾光片的有利候選人。
In this paper, we use solvent supersaturation method in atmosphere to synthesize a fully inorganic perovskite quantum dot with high luminosity; and use APTES as a ligand to replace the organic long chain molecule. By replacing the ligand, we can prevent organic long chain molecules remain on the surface of device and can improve the characteristics of the device. Due to using APTES as ligand to synthesize perovskite quantum dots, we can coat silica on the surface of quantum dot as protection layer by utilize the characteristics of APTES. The protective layer can effectively prevent the quantum dots from being affected by environmental issues.
In this study, we tried to find the best PLQY by trying different Pb and APTES molar ratios. We found that when the Pb and APTES molar ratio is 1:1.5, there will have the best result of PLQY 58%. In addition, by utilizing the characteristics of organic silane, we can combine quantum dot and silica nanospheres together. The silica-coated perovskite quantum dots can attach to the surface of nanospheres. Due to the optical properties of the nanospheres, we can cause UV-light scattered and increase the opportunity for quantum dots on the sphere surface to absorb photons. We add different weights of nanospheres into the solvent which contain quantum dots to find the best result. When quantum dots and nano sphere have weight ratio at 1:2.17 can form diffractive particles(DP) with high PLQY 81%. Greatly improve the luminous efficiency of quantum dots.
The self-synthesized diffractive particles can be combined with polymethyl methacrylate(PMMA) to make perovskite quantum dots diffusion film. The film made by this method may be a potential candidate of next generation color filter.
1. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," J Am Chem Soc, vol. 131, no. 17, pp. 6050-1, May 6 2009.
2. L. Protesescu et al., "Nanocrystals of Cesium Lead Halide Perovskites (CsPbX(3), X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut," Nano Lett, vol. 15, no. 6, pp. 3692-6, Jun 10 2015.
3. S. Sun, D. Yuan, Y. Xu, A. Wang, and Z. Deng, "Ligand-Mediated Synthesis of Shape-Controlled Cesium Lead Halide Perovskite Nanocrystals via Reprecipitation Process at Room Temperature," ACS Nano, vol. 10, no. 3, pp. 3648-57, Mar 22 2016.
4. Y. Tong et al., "Highly Luminescent Cesium Lead Halide Perovskite Nanocrystals with Tunable Composition and Thickness by Ultrasonication," Angew Chem Int Ed Engl, vol. 55, no. 44, pp. 13887-13892, Oct 24 2016.
5. Y. Tong et al., "Spontaneous Self-Assembly of Perovskite Nanocrystals into Electronically Coupled Supercrystals: Toward Filling the Green Gap," Adv Mater, p. e1801117, Jun 5 2018.
6. X. Li et al., "CsPbX3Quantum Dots for Lighting and Displays: Room-Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light-Emitting Diodes," Advanced Functional Materials, vol. 26, no. 15, pp. 2435-2445, 2016.
7. S. W. Dai et al., "Perovskite Quantum Dots with Near Unity Solution and Neat-Film Photoluminescent Quantum Yield by Novel Spray Synthesis," Adv Mater, vol. 30, no. 7, Feb 2018.
8. J. P. Park, T. K. Lee, S. K. Kwak, and S.-W. Kim, "Formation of bright-green-color-emitting perovskite CsPbBr 3 in a bulk state using a simple recrystallization process," Dyes and Pigments, vol. 144, pp. 151-157, 2017.
9. L. Wu et al., "From Nonluminescent Cs4PbX6 (X = Cl, Br, I) Nanocrystals to Highly Luminescent CsPbX3 Nanocrystals: Water-Triggered Transformation through a CsX-Stripping Mechanism," Nano Lett, vol. 17, no. 9, pp. 5799-5804, Sep 13 2017.
10. J. Kang and L. W. Wang, "High Defect Tolerance in Lead Halide Perovskite CsPbBr3," J Phys Chem Lett, vol. 8, no. 2, pp. 489-493, Jan 19 2017.
11. M. Zhang et al., "Stable CsPbBr3 perovskite quantum dots with high fluorescence quantum yields," New Journal of Chemistry, vol. 42, no. 12, pp. 9496-9500, 2018.
12. Q. A. Akkerman, G. Raino, M. V. Kovalenko, and L. Manna, "Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals," Nat Mater, vol. 17, no. 5, pp. 394-405, May 2018.
13. S. Huang et al., "Morphology Evolution and Degradation of CsPbBr3 Nanocrystals under Blue Light-Emitting Diode Illumination," ACS Appl Mater Interfaces, vol. 9, no. 8, pp. 7249-7258, Mar 1 2017.
14. J. Chen, D. Liu, M. J. Al-Marri, L. Nuuttila, H. Lehtivuori, and K. Zheng, "Photo-stability of CsPbBr3 perovskite quantum dots for optoelectronic application," Science China Materials, vol. 59, no. 9, pp. 719-727, 2016.
15. C. Sun et al., "Efficient and Stable White LEDs with Silica-Coated Inorganic Perovskite Quantum Dots," Adv Mater, vol. 28, no. 45, pp. 10088-10094, Dec 2016.
16. Q. Zhou, Z. Bai, W. G. Lu, Y. Wang, B. Zou, and H. Zhong, "In Situ Fabrication of Halide Perovskite Nanocrystal-Embedded Polymer Composite Films with Enhanced Photoluminescence for Display Backlights," Adv Mater, vol. 28, no. 41, pp. 9163-9168, Nov 2016.
17. Y. Xin, H. Zhao, and J. Zhang, "Highly Stable and Luminescent Perovskite-Polymer Composites from a Convenient and Universal Strategy," ACS Appl Mater Interfaces, vol. 10, no. 5, pp. 4971-4980, Feb 7 2018, doi: 10.1021/acsami.7b16442.
18. S. Huang, Z. Li, L. Kong, N. Zhu, A. Shan, and L. Li, "Enhancing the Stability of CH3NH3PbBr3 Quantum Dots by Embedding in Silica Spheres Derived from Tetramethyl Orthosilicate in "Waterless" Toluene," J Am Chem Soc, vol. 138, no. 18, pp. 5749-52, May 11 2016.
19. X. Li, Y. Wang, H. Sun, and H. Zeng, "Amino-Mediated Anchoring Perovskite Quantum Dots for Stable and Low-Threshold Random Lasing," Adv Mater, vol. 29, no. 36, Sep 2017.
20. L. Xu et al., "Double-Protected All-Inorganic Perovskite Nanocrystals by Crystalline Matrix and Silica for Triple-Modal Anti-Counterfeiting Codes," ACS Appl Mater Interfaces, vol. 9, no. 31, pp. 26556-26564, Aug 9 2017.
21. D. H. Park, J. S. Han, W. Kim, and H. S. Jang, "Facile synthesis of thermally stable CsPbBr 3 perovskite quantum dot-inorganic SiO 2 composites and their application to white light-emitting diodes with wide color gamut," Dyes and Pigments, vol. 149, pp. 246-252, 2018.
22. H. Liu, H. He, Q. Sun, K. Lin, Y. Yao, and L. Wang, "A new approach to stabilize the CsPbX3 quantum dots by double chemical coupling with stress," Journal of Alloys and Compounds, vol. 782, pp. 235-241, 2019.
23. H. C. Yoon, S. Lee, J. K. Song, H. Yang, and Y. R. Do, "Efficient and Stable CsPbBr3 Quantum-Dot Powders Passivated and Encapsulated with a Mixed Silicon Nitride and Silicon Oxide Inorganic Polymer Matrix," ACS Appl Mater Interfaces, vol. 10, no. 14, pp. 11756-11767, Apr 11 2018.
24. M. Su, D. Wu, B. Fan, F. Wang, K. Wang, and Z. Luo, "Synthesis of highly efficient and stable CH 3 NH 3 PbBr 3 perovskite nanocrystals within mesoporous silica through excess CH 3 NH 3 Br method," Dyes and Pigments, vol. 155, pp. 23-29, 2018.
25. Z. Liu et al., "Toward Highly Luminescent and Stabilized Silica-Coated Perovskite Quantum Dots through Simply Mixing and Stirring under Room Temperature in Air," ACS Appl Mater Interfaces, vol. 10, no. 15, pp. 13053-13061, Apr 18 2018.
26. H. C. Yoon, H. Lee, H. Kang, J. H. Oh, and Y. R. Do, "Highly efficient wide-color-gamut QD-emissive LCDs using red and green perovskite core/shell QDs," Journal of Materials Chemistry C, vol. 6, no. 47, pp. 13023-13033, 2018.
27. F. L. Zeng et al., "Ultrastable Luminescent Organic-Inorganic Perovskite Quantum Dots via Surface Engineering: Coordination of Methylammonium Bromide and Covalent Silica Encapsulation," ACS Appl Mater Interfaces, vol. 10, no. 49, pp. 42837-42843, Dec 12 2018.
28. Y. Xin, W. Shen, Z. Deng, and J. Zhang, "Highly Emissive and Color-Tunable Perovskite Cross-linkers for Luminescent Polymer Networks," ACS Appl Mater Interfaces, vol. 10, no. 34, pp. 28971-28978, Aug 29 2018.
29. X. Liang, M. Chen, Q. Wang, S. Guo, and H. Yang, "Ethanol-Precipitable, Silica-Passivated Perovskite Nanocrystals Incorporated into Polystyrene Microspheres for Long-Term Storage and Reusage," Angew Chem Int Ed Engl, vol. 58, no. 9, pp. 2799-2803, Feb 25 2019.
30. T. Xuan et al., "Super-Hydrophobic Cesium Lead Halide Perovskite Quantum Dot-Polymer Composites with High Stability and Luminescent Efficiency for Wide Color Gamut White Light-Emitting Diodes," Chemistry of Materials, vol. 31, no. 3, pp. 1042-1047, 2019.
31. F. Zhang et al., "Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology," ACS Nano, vol. 9, no. 4, pp. 4533-4542, 2015.
32. J. C. de Mello, H. F. Wittmann, and R. H. Friend, "An improved experimental determination of external photoluminescence quantum efficiency," Advanced Materials, vol. 9, no. 3, pp. 230-232, 1997.
33. A. Kostopoulou, M. Sygletou, K. Brintakis, A. Lappas, and E. Stratakis, "Low-temperature benchtop-synthesis of all-inorganic perovskite nanowires," Nanoscale, vol. 9, no. 46, pp. 18202-18207, Nov 30 2017.
34. F. Krieg et al., "Colloidal CsPbX3 (X = Cl, Br, I) Nanocrystals 2.0: Zwitterionic Capping Ligands for Improved Durability and Stability," ACS Energy Letters, vol. 3, no. 3, pp. 641-646, 2018/03/09 2018.
35. S. Musi , N. Filipovi -Vincekovi , and L. Sekovani "Precipitation of amorphous SiO2 particles and their properties," Brazilian Journal of Chemical Engineering, vol. 28, pp. 89-94, 2011.
36. D. W. deQuilettes et al., "Photo-induced halide redistribution in organic-inorganic perovskite films," Nat Commun, vol. 7, p. 11683, May 24 2016.