| 研究生: |
莊靜怡 Ching-yi Chuang |
|---|---|
| 論文名稱: |
應用HHT頻譜於結構物地震損傷之研究 |
| 指導教授: |
蔣偉寧
Wei-Ling Chiang 許文科 Wen-ko Hsu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 損傷指標 、層間變位角 、半功率帶寬 、希爾伯特-黃轉換 |
| 外文關鍵詞: | interstory drift, damage detection index, HHT, half-power bandwidth |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
依據ATC-40及FEMA-273以層間變位角作為結構物之損傷指標。本文採用國家地震中心所發表之兩組震動台試驗,其震動台分別輸入Kobe及El Centro地震力,並將數據藉由加速度二次積分及測得的真實位移計算層間變位角,得知層間變位角無法看出結構物降伏損害位置。
因此,本文另外採用HHT方法探討結構物損傷偵測之可能性,並定義頻寬比(RB)作為損傷指標。將震動台數據進行HHT及FFT分析並計算頻寬比,藉由頻寬比進一步了解結構物損傷情形。
研究成果顯示:
(1)當結構物在線彈性反應時,頻寬比在HHT邊際譜與FFT頻譜中僅有微小改變。
(2)當結構物進入非線性反應後,觀察HHT邊際譜發現頻寬比有明顯增加之情形,藉此可獲得結構物的降伏發生。相反的,FFT頻譜無法看出此現象。
(3)頂樓之頻寬比變化相較於其它樓層明顯。
(4)分析頂樓之加速度反應可偵測結構物是否發生損害。
因此,將HHT邊際譜進行平滑處理所得之頻寬比運用於結構物損害中,是項成功的損傷指標。
Referring to the ATC-40 and FEMA-273, the interstory drift is used as a damage detection index. This research uses two benchmark models which built by the National Center for Research on Earthquake Engineering (NCREE). Shaking table test data from benchmark models subjected to adjusted Kobe and El Centro earthquakes are analyzed to evaluate interstory drift using the acceleration integration method and measured displacement (LVDT). The results of the yielding point in interstory drift curve are difficult to find out when member damage occurs.
Therefore, this study investigates the feasibility of detecting structural damage using the HHT method and the Ratio of Bandwidth (RB) is proposed as the damage detection index. Shaking table test data are analyzed to evaluate the RB using the Hilbert-Huang Transform (HHT) and the Fast Fourier Transform (FFT) methods, respectively.
The result of this study shows that:
(1)When the response of the structure is in the elastic region, there is very small change in the RB value from the HHT spectra and the FFT spectra.
(2)The incremental change in RB estimated from the HHT spectra versus the PGA value can be seen when the structure response in nonlinear i.e., member yielding occurred, but not in the RB from the FFT spectra.
(3)The RB of the top floor reveals the highest change value than other floors.
(4)Structural damage can be detected using only the acceleration response data from the top floor.
Therefore, the ratio of bandwidth (RB) which estimated from the smoothed HHT spectra is an effective and sensitive damage index for the detection of structural damage.
1. Doebling, S.W, Farrar, C.R., and Prime, M.B., ”A summary review of vibration-based damage identification methods”,The Shock and Vibration Digest, Vol. 30, pp. 91-105, 1998.
2. Rytter, A., “Vibration based inspection of civil engineering structures”, PhD dissertation Department of Building Technology and Structural Engineering, Aalborg University, Aalborg, Denmark, 1993.
3. Pandey A.K. and Biswas M, “Damage detection from changes in curvature mode shapes”, Journal of Sound and Vibration, Vol. 145, No. 2, pp.321-332, 1991.
4. Lin, C.S., “Location of modeling errors using modal test data”, AIAA Journal, Vol. 28, No. 9, pp. 1650-1654, 1995.
5. Pandey A.K. and Biswas M, “Damage detection in structures using changes in flexibility”, Journal of Sound and Vibration, Vol. 169, No. 1, pp. 3-16, 1994.
6. Farrar, C.R., Doebling, S.W., and Duffey, T.A., “Vibration-based damage detection”, SD2000, Struct. Dyn. Forum, 1999.
7. Hielmstad, K.D. and Shin, S., “Damage detection and assessment of structures from static response”, Journal of Engineering Mechanics, Vol. 123, pp. 568-576, 1997.
8. Aktan, E., Brown, D., Farrar, C., Helmicki, A., Hunt, V. and Yao, J., “Objective Global condition assessment”, Proceedings of SPIE-the international society for optical engineering, Vol. 3089, pp. 364, 1997.
9. Staszewski, W.J., “Identification of non-linear systems using multi-scale ridges and skeletons of the wavelet transform”, Journal of Sound and Vibration, Vol. 214, No. 4, pp. 639-658, 1998
10. Farrar, C.R. and Jauregui, D.A., “Comparative study of damage identification algorithms applied to a bridge: I. Experiment”, Smart Materials and Structures, Vol. 7, No. 5, pp. 704-719, 1998.
11. Farrar, C.R. and Jauregui, D.A., “Comparative study of damage identification algorithms applied to a bridge: II. Numerical study”, Smart Materials and Structures, Vol. 7, No. 5, pp. 720-731, 1998.
12. Zhao, J., DeWolf, J., and ASCE, fellow, “Sensitivity study for vibrational parameters used in damage detection”, Journal of Structural Engineering, Vol. 125, pp. 410-416, 1999.
13. Ghobarah, A., Abou-Elfath, H. and Biddah, A., “Response-based damage assessment of structures”, Earthquake Engineering and Structural Dynamics, Vol. 28, pp. 79-104, 1999.
14. Hu, N., Wang, X., Fukunaga, H., Yao, Z.H., Zhang, H.X., and Wu, Z.S., “Damage assessment of structures using modal test data”, International Journal of Solids and Structures, Vol. 38, pp. 3111-3126, 2001.
15. Wang, X., Hu, N., Fukunaga, H. and Yao, Z.H., “Structural damage identification using static test data and changes in frequencies”, Engineering Structures, Vol. 23, pp. 610-621, 2001.
16. Masri, S.F., Nakamura, M., Chassiakos, A.G.. and Caughey, T.K., “Neural network approach to detection of changes in structural parameters”, Journal of Engineering Mechanics, ASCE, Vol. 122, No. 4, pp. 350-360., 1996.
17. Nakamura, M., Masri, S.F., Chassiakos, A.G.. and Caughey, T.K., “A method for non-parametric damage detection through the use of neural networks”, Earthquake Engineering Structural Dynamics, Vol. 27, pp. 997-1010, 1998.
18. Huang, C.C. and Loh, C.H., “Nonlinear identification of dynamic systems using neural networks”, Computer-Aided Civil and Infrastructure Engineering, Vol. 16, pp. 28-41, 2001.
19. Sun, Z. and Chang, C.C., “Structural damage assessment based on wavelet packet transform”, Journal of Structural Engineering, Vol.128, pp. 1354-1361, 2002.
20. Yam, L.H., Yan, Y.J. and Jiang, J.S., “Vibration-based damage detection for composite structures using wavelet transform and neural network identification”, Composite Structures, Vol.60, pp.403-412, 2003.
21. Barroso, L.R. and Rodriguez, R., “Application of the damage index method to phase II of the analytical SHM benchmark problem”, 15th ASCE Engineering Mechanics Conference, Columbia University, 2002.
22. Loh, C.H. and Lin, P.Y., “Structural health monitoring research at NCREE and NTU”, Columbia University, New York, USA, 2004.
23. 羅俊雄,林裕家,許丁友,「利用地震反應資料進行結構全域及局部性損害評估」,國家地震工程研究中心研究報告,NCREE-07-047,2007。
24. Cooley, J.W. and Tukey, J.W., “An algorithm for the machine calculation of complex Fourier series.” Mathematics of Computation, Vol. 19,No. 90, pp.297–301, 1965.
25. Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu H.H, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis”, Mathematical, Physical and Engineering Sciences, Vol. 454, No. 1971, pp. 903-995, 1998.
26. Huang, N.E., Shen, Z., and Long, S.R., ‘‘A new view of nonlinear water waves: The Hilbert spectrum.’’ Annual. Review of Fluid Mechanics, Vol. 31, pp. 417–457, 1999.
27. Yang, J. N., and Lei, Y., ‘‘System identification of linear structures using Hilbert transform and empirical mode decomposition.’’ Proc., 18th Int. Modal Analysis Conf.: A Conf. on Structural Dynamics, Vol. 1, Society for Experimental Mech., Inc., Bethel, Conn., pp. 213–219, 2000.
28. Yang, J. N., and Lei, Y., ‘‘Identification of civil structures with nonproportional damping.’’ Proceedings of SPIE, Vol. 3988, pp. 284–294, 2000.
29. 吳政憲,「希爾伯特阻尼譜於高樓損傷評估之應用」,國立中央大學土木工程研究所碩士論文,2001年。
30. Zhang R.R., Ma S., Safak E., and Hartzell S., “Hilbert-Huang transform analysis of dynamic and earthquake motion recordings”, Journal of Engineering Mechanics, ASCE, Vol. 129, No. 8, pp. 861-875, 2003.
31. Yang J.N., Lei Y., Pan S. and Huang N.E., “System identification of linear structures based on Hilbert-Huang spectral analysis. Part 1: normal modes”, Earthquake Engineering and Structural Dynamics, Vol. 32, No. 9, pp. 1443-1467, 2003.
32. Yang J.N., Lei Y., Pan S. and Huang N.E., ‘‘Identification of linear structures based on Hilbert-Huang transform. Part II: Complex modes.’’, Earthquake Engineering and Structural Dynamics, Vol. 32, No. 10, pp. 1533–1554, 2003.
33. Yang JN, Lei Y, Lin S, Huang N., “Hilbert–Huang based approach for structural damage detection.” Journal of Engineering Mechanics, ASCE, Vol. 130, No.1, pp. 85–95, 2004.
34. Lin, S., Yang, J. N. and Zhou, L., “Damage identification of a benchmark building for structural health monitoring.” Smart Materials Structures, Vol. 14, pp. S162–S169, 2005.
35. Pines, D. and Salvino, L., “Structural health monitoring using empirical mode decomposition and the Hilbert phase.” Journal of Sound and Vibration, Vol. 294, pp. 97-124, 2006.
36. Wu, Z. and Huang, N.E., “Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method.” Centre for Ocean-Land-Atmosphere Studies, Technical Report series, Vol. 193, No.173, 2004.
37. Su, S. C., Huang, N. E., and Wen, K.L., “A new spectral representation of strong motion earthquake data: Hilbert spectral analysis of Taipower building station, 1994~2006.” Proc., 5th Int. Conf. on Urban Earthquake Engineering, Tokyo, Japan, 2008.
38. Norden E Huang and Samuel S P Shen, ” Hilbert-Huang Transform and Its Applications”, World Scientific Publishing Co., Pub:9,pp. 305-334, 2005.
39. Copson, E. T., “Asymptotic Expansions”, Cambridge University Press, Cambridge., 1967.
40. Pandey, J. N., “The Hilbert transform of Schwartz distributions and applications”, New York : John Wiley, 1996.
41. Gabor, D., “Theory of communication”, Proc. IEE, Vol. 93, pp. 429-457, 1946.
42. Tichmarsh, E. C., “Introduction to the theory of Fourier Integrals”, Oxford University Press, Oxford., 1948.
43. Newland, D. E., “An introduction to Random Vibrations, Spectral & Wavelet Analysis”, John Wiley & Sons, Inc., New York., 1993.
44. Dazin, P. G.., “Nonlinear Systems”, Cambridge University Press, Cambridge., 1992.
45. Long, S. R., Huang, N. E., Lung, C. C., Wu, M. L., Lin, R. Q., Mollo-Christensen, E., and Yuan, Y., “The Hilbert Techniques : An alternate approach for non-steady time series analysis”, IEEE Geoscience Remote Sensing Soc. Lttr. 3, pp. 6-11, 1995.
46. Whitham, G.. B., “Linear and Nonlinear waves”, John Wiley, New York, 1975.
47. Huang, N. E., Shen, Z., and Long, S. R., “A New View of Nonlinear Water Waves : The Hilbert Spectrum”, Annual Review of Fluid Mechanics, Vol. 31, pp. 417-457, 1999.
48. Applied Technology Council(ATC), Seismic Evaluation and Retrofit of Concrete Buildings, Vol. 1, ATC 40, Redwood City, CA,1996.
49. Federal Emergency Management Agency, NEHRP Guidelines for the Seismic Rehabilitaion of Buildings, FEMA-273, Building Seismic Safety Council, Washington D.C.,1997.
50. 葉士青,鄭橙標,羅俊雄,「五層樓縮尺鋼結構振動台試驗分析報告」,國家地震工程研究中心研究報告,NCREE-99-002,1999。
51. 林沛暘,羅俊雄,游信源,吳紀宏,「標竿鋼構樓房震動台試驗」,國家地震工程研究中心研究報告,NCREE-06-020,2006。
52. KUSUNOKI KOICHI, and TESHIGAWARA MASAOMI, “A new acceleration integration method to develop a real-time residue seismic capacity evaluation system.” Journal of Structural and Construction Engineering, No. 569, pp. 119-126. , 2003.
53. Chopra, A. K., “Dynamics of Structures”, second edition, Prentice Hall, 2000.
54. Chou Ya-lun., Statistical Analysis, 2d ed. New York: Holt Rinehart and Winston, pp. 562–565. , 1975.