| 研究生: |
洪棨桐 Chi-Tong Hong |
|---|---|
| 論文名稱: |
不可逆絕熱邏輯與靜態隨機存取記憶體之設計 Design of Irreversible Adiabatic Logic and Static Random Access Memory |
| 指導教授: |
蘇純賢
Chun-Hsien Su 薛木添 Muh-Tian Shiue |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 靜態隨機存取記憶體 、低功率 、絕熱邏輯 |
| 外文關鍵詞: | CEPAL, low power, SRAM |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文囊括二個不同的部份:第一部份探討低功率設計中的絕熱邏輯,並提出一改良之架構;第二部份為高效能靜態隨機存取記憶體的設計。
互補能量路徑絕熱邏輯 (CEPAL)改良半靜態能量回復邏輯 (QSERL),透過增加一組充、放電的電晶體,產生互補的充、放電路徑。其電路使用單一互補弦波、以不需要相位交錯的多級結構、輸出端有著類似傳統CMOS電路的靜態特性為特色。CEPAL比起QSERL,有效縮短了輸出端的浮接時間,並具有更好的抗漏電流能力、雜訊容忍度、負載推動能力與製程穩定度。 本文更將所提出之CEPAL應用在序向電路中不可或缺的D型正反器上,以TSMC 0.18-um CMOS製程進行模擬,當電路操作於25 MHz時,CEPAL比起QSERL能節省多達60%的總體能量效益,搭配吾人所提出的“共用概念 (share scheme)”,在實現CEPAL電路上,能有著相同於實現QSERL電路的面積花費。
在本文的另一部份-靜態隨機存取記憶體之設計,吾人主要在於改變架構中的記憶單元、寫入電路與感測放大器。吾人先提出改變記憶單元中元件的外觀比以增加栓鎖資料的抗雜訊能力;之後,更進一步提出利用縮小寫入資料的電壓擺幅,以降低寫入時的功率損耗,再透過等電位訊號取代預充電的操作,提升讀取時的感測速度。吾人設計並模擬一4 kb的靜態隨機存取記憶體(使用Cadence及Hspice),在供應電應為1.8 V與時脈頻率為1 GHz的操作情況下,8位元資料的輸出訊號均可達500 MHz,晶片整體(含輸出緩衝器)的功率損耗為8.932 mW,所設計之4 kb記憶體已透過國家晶片中心完成晶片下線製造。
This thesis embraces two different themes. The first is the improvement in adiabatic logic for low-power design. The other is on the design of an efficient static random access memory (SRAM).
With reference to the first part, a structure called complementary energy path adiabatic logic (CEPAL) is proposed to improve the insufficiency of quasi-static energy recovery logic (QSERL). CEPAL employs respectively one additional transistor in its charging / discharging paths, compared to the QSERL counterpart, such that it can be with complementary energy paths. In addition, two complementary sinusoidal power clocks are used to achieve static CMOS characteristics. The two sinusoidal clocks do not require complex clocking schemes. CEPAL shortens substantially the time with respect to output floating, and has better fault tolerance, static noise margin, driving ability, and tolerance to process variation than QSERL.
In addition to the presented logic style, CEPAL was further applied to D flip-flop that is essential to the sequential circuits. We studied the properties of interest by means of a 0.18-um CMOS process. The CEPAL DFF achieves an energy saving of 60% compared to its QSERL counterpart when operating at 25 MHz. With the proposed share scheme, the two logic styles can have the same area cost in terms of the designed circuits.
As for the design of the SRAM, cell, write circuit and sense amplifier are of major improvement. In this part, we first propose to vary the cell aspect ratio so as to improve its static noise margin. We then propose to reduce the power loss during the write operation through shrinking the voltage swing on writing in data. Notably, we improve the sensing speed on read through using “equalizing” in place of the “precharging” in bit lines.
We have designed and simulated a 4-kb SRAM using Cadence environment and Hspice. Simulation results show that while the designed 4-kb SRAM is set up at 1-GHz clock and nominal 1.8-V DC power supply, the 8-bit data outputs can have up to 500-MHz speed, with a total power consumption (including the output buffers) of 8.932 mW. The designed SRAM has been fabricated through the National Chip Implementation Center (CIC), Taiwan, R.O.C..
[1.1] A. G. Dickinson and J. S. Denker, “Adiabatic dynamic logic,” IEEE J. Solid-State Circuits, vol. 30, pp. 311 - 315, Mar. 1995.
[1.2] A. Kramer, J. S. Denker, S. C. Avery, A. G. Dickinson, and T. R. Wik, “Adiabatic computing with the 2N-2N2D logic family,” IEEE Symp. VLSI Circuits Tech. Dig., pp. 25 - 26, 1994.
[1.3] Y. Moon and D.-K. Jeong, “An efficient charge recovery logic circuit,” IEEE J. Solid-State Circuits, vol. 31, pp. 514 - 522, Apr. 1996.
[1.4] A. Kramer, J. S. Denker, B. Flower, J. Moroney, “2nd order adiabatic computation with 2N-2P AND 2N-2N2P logic circuits,” Int. Workshop on Low Power Design, Apr. 1995.
[1.5] D. Maksimovic, V. G. Oklobdzija, B. Nikolic, and K. W. Current, “Clocked CMOS adiabatic logic with integrated single-phase power-clock supply,” IEEE Trans. VLSI Syst., vol. 8, pp. 460 - 463, Aug. 2000.
[1.6] V. G. Oklobdzija and D. Maksimovic, “Pass-transistor adiabatic logic using single power-clock supply,” IEEE Trans. Circuits Syst. II, vol. 44, pp. 842 - 846, Oct. 1997.
[1.7] F. Liu and K.T. Lau, “Pass-transistor adiabatic logic with NMOS pulldown configuration,” Electro. Lett., vol. 34, pp. 739 - 741, 1998
[1.8] S. Kim and M. C. Papaefthymiou, “True single-phase adiabatic circuitry,” IEEE Trans. VLSI Syst., vol. 9, pp. 52 - 63, Feb. 2001.
[1.9] S. Li, F. Zhou, C. Chen, H. Chen and Y. Wu, “Quasi-static energy recovery logic with single power-clock supply”, IEEE ISCAS, May 2007, pp. 2127 - 2127.
[1.10] V. De and J. D. Meindl, “Complementary adiabatic and fully adiabatic MOS logic families for gigascale integration,” in ISSCC Dig. Tech. Papers, 1996, pp. 298 - 299.
[1.11] Y. Ye and K. Roy, “QSERL: quasi-static energy recovery logic,” IEEE J. Solid-State Circuits, vol. 36, pp. 239 - 248, Feb. 2001.
[3.1] N. H. E. Weste and D. Harris, “CMOS VLSI Design – A circuits and System Perspective,” 3rd ed. MA: Addison-Wesley, 2005.
[3.2] H. Soeleman and K. Roy, “Ultra-low power digital subthreshold logic circuits”, IEEE Symp. ISLPED, 1999, pp. 94 - 96.
[3.3] H. Soeleman, K. Roy and B. C. Paul, “Robust subthreshold logic for ultra-low power operation”, IEEE Trans. VLSI Syst., vol. 9, pp. 90 - 99, Feb. 2001.
[3.4] J. Nyathi and B. Bero, “Logic circuits operating in subthreshold voltages”, IEEE Symp. ISLPED, Oct. 2006, pp. 131 - 134.
[3.5] N. Nedovic, W. W. Walker, V. G. Oklobdzija, “A test circuit for measurement of clocked storage element characteristics”, IEEE J. Solid-State Circuits, vol. 39, pp. 1294 - 1904, Aug. 2004.
[3.6] S. J. Lovett, R. Clancy, M. Welten, A. Mathewson and B. Mason, “Characterizing the mismatch of submicron MOS transistors”, IEEE ICMTS, vol. 9, Mar. 1996, pp.39 - 42.
[4.1] C. C. Wang, Y. L. Tseng, H.Y. Leo and R. Hu, “A 4-kB 500-MHz 4T CMOS SRAM using low-VTHN bitline drivers and high-VTHP latches”, IEEE Trans. VLSI Syst., vol. 12, pp. 901 - 909, Sep. 2004.
[4.2] K. Kanda, H. Sadaaki and T. Sakurai, “90% write power-saving using sense-amplifying memory cell”, IEEE J. Solid-State Circuits, vol. 39, pp. 924 - 933, June 2004.
[4.3] .S. Wang, W. Tseng and H. Y. Li, “Low-power embedded SRAM with the current-mode write technique,” IEEE J. Solid-State Circuits, vol. 35, pp. 119 - 124, Jan. 2000.
[4.4] Y. Chung and S. W. Shim, “Sub-1V embedded SRAM with bit-error immune dual-boosted cell technique”, Electronics Letters, vol. 43, Feb. 2007, pp. 157 - 158.
[5.1] D. A. Hodges, H. G. Jackson and R. A. Saleh, “Analysis and Design of Digital Integrated Circuits,” 3rd ed. NY: McGraw-Hill. Press, 2003.
[6.1] K. W. Mai, T. Mori, B. S. Amrutur, R. Ho, B. Wilburn, M. A. Horowitz, I. Fukushi, T. Izawa and S. Mitarai, “Low-power SRAM design using half-swing pulse-mode techniques,” IEEE J. Solid-State Circuits, vol. 33, pp. 1659 - 1671, Nov. 1998.
[6.2] C. C. Wang, P. M. Lee and K. L. Chen, “An SRAM design using dual threshold voltage transistors and low-power quenchers,” IEEE J. Solid-State Circuits, vol. 38, pp. 1712 - 1720, Oct. 2003.
[6.3] C. C. Wang, T. H. Chen and R. Hu, “A 4-kb 667MHz CMOS SRAM using dynamic threshold voltage wordline transistor,” in Proc. Southwest Symp. on Mixed-Signal Design, pp. 90 - 93, 2003.
[6.4] C. C. Wang, C. L. Lee and W. J. Lin, “A 4-kb low-power SRAM design with negative word-line scheme,” IEEE Trans. Circuits Syst. II, vol. 54, pp. 1069 - 1076, May 2007.
[6.5] K. Mai, R. Ho, E. Alon, D. L. Y. Kim, D. Patil and M. A. Horowitz, “Architecture and circuit techniques for a 1.1-GHz 16-kb reconfigurable memory in 0.18-um CMOS,” IEEE J. Solid-State Circuits, vol. 40, pp. 261 - 275, Jan. 2005.
[6.6] S. Cosemans, Wim Dehaene and F. Catthoor, “A low-power embedded SRAM for wireless applications”, IEEE J. Solid-State Circuits, vol. 42, pp. 1607 – 1617, Jul. 2007.