| 研究生: |
鄭沛倫 Pei-lun Zheng |
|---|---|
| 論文名稱: |
支撐臂效應與斜式旋翼垂直軸風力機三維氣動力模擬 Three-Dimensional and Arm Effects on Aerodynamics Simulation for the Slant-H-Rotor Vertical Axis Wind Turbine |
| 指導教授: |
吳俊諆
Jiunn-chi Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 支撐臂修正 、垂直軸風力機 、三維氣動力分析 、計算流體力學 |
| 外文關鍵詞: | three-dimensional aerodynamics analysis, computational fluid dynamics, Vertical axis wind turbine, arm correlation |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
垂直軸風力機(vertical axis wind turbine)葉片的非定常空氣動力受到複雜流體行為主導,主要是來自隨著旋轉角度變化的相對攻角,誘發渦流和尾流的產生以及紊流尾流間的交互作用。此外,支撐支撐臂亦會干擾風的流動,並造成與風力機轉動方向相反的力矩,影響葉片的受力特性以及風力機效能,目前這方面的研究仍相對缺乏。
本研究以計算流體力學軟體FLUENT模擬10 kW斜式旋翼垂直軸風力機的三維氣動力特性,模擬外型除主葉片外,亦將支撐臂、塔架納入考慮,以檢視在風速為2~12 m/s、尖端速度比為1~4,葉片的推力變化,輔以模擬視流分析動態失速前後,渦流溢放的特性以及對推力的影響。此外,另一項重點在於分析支撐臂修正影響、幾何外型有無支撐臂和塔架等因素對葉片受力、功率特性的影響,並歸納各風速下合適的操作轉速。研究結果顯示出幾何外型有無支撐臂和塔架對葉片推力、風力機功率特性造成明顯的差異,當風速為6 m/s,僅含主翼的功率係數最大值(Cp,max=0.239)發生於尖端速度比為3,主翼、支撐臂、塔架功率係數最大值(Cp,max=0.304)發生於尖端速度比為2,淨值較僅含主翼提昇6.5%。在支撐臂修正影響方面,支撐臂導致的反向力矩在較高尖端速度比時(λ=3、4),於各風速下皆會明顯降低功率係數。以功率係數大於0.25為基準,歸納風力機在各風速下適合的操作轉速,其中當風速介於2~4 m/s,建議轉速應控制在尖端速度比為2,當風速介於6~ 12 m/s,建議轉速應控制在尖端速度比為2~3的範圍內。
The vertical axis wind turbine (VAWT) has an inherent unsteady aerodynamic behavior due to the variance of angle of attack with the revolutionary angle, causing the generation of the turbulence wake and the wake interaction between blades. In addition, the support arm will also disturb wind flow motion, generating counter torque when the blades are rotating, affecting the characteristic of blade loading and the performance of VAWT. To date, few studies have done in these area.
This research uses computational fluid dynamics software FLUENT to simulate the three-dimensional aerodynamics flow of a 10 kW slant-H-rotor VAWT, which has the unique design of curve blades. The effect of support arm and tower is also considered. Solution of three-dimensional flow is obtained to study thrust of blades, the development of vortex shedding when dynamic stall occurs under incoming velocity is from 2 to 12 m/s with various tip speed ratio (1-4). Another key point of the study is to investigate the effect of arm correction, the geometry with/without arm on blade loading and on the performance of VAWT. Finally, the appropriate operation condition under various wind velocity for slant-H-rotor VAWT are summarized. The simulation result indicates the geometry with/without arm make huge difference on blade loading and the performance of VAWT, the maximum power coefficient (Cp,max) is 0.239 at tip speed ratio of 3 for geometry with blade-only, while Cp,max is 0.304 at tip speed ratio of 2 for geometry with blade, arm and tower. For the effect of arm correction, result shows counter torque causing by arm reduces the power coefficient significantly under tip speed ratio is 3 and 4 with various wind velocity. In terms of power coefficient higher than 0.25, the appropriate operation condition for slant-H-rotor VAWT are summarized. When wind velocity is 2 to 4 m/s, the appropriate tip speed ratio is 2, while wind velocity is 6 to 12 m/s, the appropriate tip speed ratio is 2 to 3.
[1] Manwell, J.F., McGowan, J.G., Rogers, A.L. (2002). Wind Energy Explained: Theory, Design and Application, Wiley & Sons.
[2] Gipe, P. (1995). Wind Energy Comes of Age, Wiley & Sons.
[3] Ackermann, T., Soder, L. (2002). An overview of wind energy-status 2002, Renewable and Sustainable Energy Reviews 6:67-128.
[4] Cruz, J.I., Arribas, L. (2009). Wind energy the facts–Part I–Technology, Research Centre for Energy, Environment and Technology, Madrid, Spain.
[5] Mertens, S. (2003). The energy yield of roof mounted wind turbines, Wind Engineering 27(6):507-518.
[6] Sharpe, T., Proven, G. (2010). Crossflex: concept and early development of a true building integrated wind turbine, Energy Buildings 42:2365-2375.
[7] 孫耘(2007)。新型垂直軸風力發電系統之設計與實現,淡江大學航空工程研究所碩士論文。
[8] Darrieus, G.J.M. (1931). United States Patent, No.1835018, Dec. 8.
[9] Ashwill, T.D. (1992). Measured data for the Sandia 34-meter vertical axis wind turbine, Albuquerque: Sandia National Laboratories, Report No.: SAND91-2228.
[10] Sandia National Laboratories. http://www.sandia.gov/
[11] Darrieus wind turbine http://en.wikipedia.org/wiki/Darrieus_wind_turbine, accessed 14th August 2009.
[12] Eriksson, S., Bernhoff, H., Leijon, M. (2008). Evaluation of different turbine concepts for wind power. Renewable and Sustainable Energy Reviews, 12(5), 1419-1434.
[13] Quiet Revolution Ltd. http://www.quietrevolution.com/index.htm
[14] Templin, R.J. (1974). Aerodynamic performance theory for the NRC vertical-axis wind turbine, NRC Lab. Report LTR-LA-190.
[15] Strickland, J.H. (1976). A performance prediction model for the Darrieus turbine, International symposium on wind energy systems C3:39–54, Cambridge, UK.
[16] Blackwell, B.F., Sheldahl R.E., Feltz L.F. (1976). Wind tunnel performance data for the darrieus wind turbine with NACA -0012 blades, Albuquerque: Sandia National Laboratories, Report No.: SAND76-0130.
[17] Blackwell, B.F., Sheldahl R.E. (1977). Selected wind tunnel test results for the darrieus wind turbine, J. Energy 1(6):382-386.
[18] Klimas, P.C., Sheldahl, R.E. (1978). Four aerodynamic prediction schemes for vertical-axis wind turbines:a compendium, Albuquerque: Sandia National Laboratories, Report No.: SAND78-0014.
[19] Worstell, M.H. (1979). Aerodynamic performance of the 17-m darrieus wind turbine, Albuquerque: Sandia National Laboratories, Report No.: SAND78-1737.
[20] Paraschivoiu, I. (1981). Double-multiple streamtube model for Darrieus wind turbines, Second DOE/NASA wind turbines dynamics workshop, NASA CP-2186:19-25, Cleveland.
[21] Larsen, H.C. (1975). Summary of a vortex theory for the cyclogiro, Proceedings of the second US National Conferences on Wind Eng. Research: p. V8-1-3.
[22] Fanucci, J.B., Walter, R.E. (1976). Innovative wind machines: the theoretical performance of a vertical-axis wind turbine, Proceedings of the vertical-axis wind turbine technology workshop, Sandia National Laboratories, Report No.: SAND76-5586.
[23] Wilson, R.E. (1980). Wind-turbine aerodynamics, J. Wind Eng. Ind. Aerodynamics 5:357-372.
[24] Strickland, J.H., Webster B.T., Nguyen T. (1979). A Vortex model of the darrieus turbine: an analytical and experimental study, J. Fluids Eng 101:500-505.
[25] Paraschivoiu, I., Allet, A. (1995). Viscous flow and dynamic stall effects on vertical-axis wind turbines, International J. Rotating Machinery 2(1):1-14.
[26] Islam, M., Ting, D. S.-K., Fartaj, A. (2008). Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines, Renewable & Sustainable Energy Reviews 12: 1087-1109.
[27] Berg, D.E., Klimes, P. C., Stephenson, W. A. (1990). Aerodynamic design and initial performance measurements for the Sandia 34-m diameter vertical-axis wind turbine, Proceedings of the Ninth ASME Wind Energy Symposium, ASME.
[28] Lissaman, P.B.S. (1983). Low Reynolds number airfoils, Ann. Rev. Fluid Mech.15:223-239.
[29] Deglaire, P. (2010). Analytical aerodynamic simulation tools for vertical axis wind turbines, PhD thesis, Uppsala University.
[30] Wernert, P., Geissler, W., Raffel, M., Kompenhans, J. (1996). Experimental and numerical investigations of dynamic stall on a pitching airfoil, AIAA J. 34(5):982-989.
[31] Fujisawa, N., Takeuchi, M. (1999). Flow visualization and PIV measurement of flow field around a Darrieus rotor in dynamic stall, J. Visualization 1(4):379-386.
[32] Leishman, J. (1990). Dynamic stall experiments on the NACA 23012 aerofoil, Exp Fluids 9(1):49-58.
[33] Raffel, M., Kompenhans, J., Wernert, P. (1995). Investigation of the unsteady flow velocity field above an airfoil pitching under deep dynamic stall conditions, Exp Fluids 19(2):103-111.
[34] Ferreira, C.S., Kuik, G.V., Bussel, G.V., Scarano. F. (2009). Visualization by PIV of dynamic stall on a vertical axis wind turbine, Exp. Fluids 46:97-108.
[35] 謝承翰(2009)。垂直軸風力機扭力與功率的檢測與模擬,國立成功大學航空太空工程學 系碩士論文。
[36] 鄭仁杰,苗君易,陳時鈞,胡志忠,蘇信彰(2010)。可調仰角葉片應用於垂直軸風力機之數值研究,第17屆全國計算流體力學研討會。
[37] Gupta, R., Biswas, A. (2010). Computational fluid dynamics analysis of a twisted three-bladed H-Darrieus rotor, J. Renewable Sustainable Energy, doi:10.1063/1.3483487.
[38] Beri, H., Yao, Y. (2011). Numerical simulation of unsteady flow to show self-starting of vertical axis wind turbine using Fluent, J. Applied Science 11(6):962-970.
[39] El-Samanoudy, M., Ghorab, A.A.E., Youssef, Sh.Z. (2010). Effect of some design parameters on the performance of a Giromill vertical axis wind turbine, Ain Shams Eng. J., doi:10.1016/j.asej.2010.09.012.
[40] Kirke, B.K., Lazauskas, L. (2010). Limitations of fixed pitch darrieus hydrokinetic turbines and the challenge of variable pitch, Renewable Energy, doi:10.1016/j.renene.2010.08.027.
[41] Howell, R., Qin, N., Edwards, J., Durrani, N. (2010). Wind tunnel and numerical study of a small vertical axis wind turbine, Renewable Energy 35:412-422.
[42] Scheurich, F., Fletcher, T.M., Brown, R.E. (2010). The influence of blade curvature and helical blade twist on the performance of a vertical-axis wind turbine, 48th AIAA Aerospace Sciences Meeting and Exhibit.
[43] Shiono, M., Suzuki K., Kiho, S. (2002). Output characteristics of darrieus water turbine with helical blades for tidal current generations, Proceedings of The 12th International Offshore and Polar Engineering Conference.
[44] Kirke, B.K. (1998). Evaluation of self-starting VAWT for stand-alone applications, Ph.D thesis, Griffith University.
[45] Darrieus wind turbine analysis. http://windturbine-analysis.netfirms.com/index.htm
[46] Li, Y., Calisal, S.M. (2010). Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine, Renewable Energy 35:2325-2334.
[47] 宏銳公司。http://www.iwind.com.tw/
[48] South, P., Mitchell, R., Jacobs, E. (1983). Strategies for the evaluation of advanced wind energy concepts, Solar Energy Research Institute USA, SERI/SP-635-1142.
[49] Wilson, R.E, Lissaman, P.B.S. (1974). Applied aerodynamics of wind power machines, Oregon State University Corvallis.
[50] Favier, D., Maresca, C., Rebontf, J. (1982). Dynamic stall due to fluctuactions of velocity and incidence, AIAA J. 20:1281-1288.
[51] Rinoie, K., Takemura, N. (2004). Oscillating behavior of laminar separation bubble formed on an aerofoil near stall, The Aeronautical J. 108:153-163.
[52] McCroskey. W.H. (1982). Unsteady Airfoil, Ann. Rev. Fluid Mech. 14:285-311.
[53] Leishman, J.G. (1990). Dynamic stall experiments on the NACA 23012 aerofoil, Exp. Fluids 9:49-58.
[54] Leishman, J.G. (2000). Principles of Helicopter Aerodynamics, Cambridge University Press.
[55] McCroskey, W., Carr, L., McAlister, K. (1976). Dynamic stall experiments on oscillating airfoils, AIAA J. 14(1):57-63.
[56] Carr, L. (1988). Progress in analysis and prediction of dynamic stall, J. Aircraft 25:6-17.
[57] Fujisawa, N., Shibuya, S. (2001). Observations of dynamic stall on Darrieus wind turbine blades, J. Wind Eng. & Ind. Aerody. 89:201-214.
[58] Abramovich, H. (1987). Vertical axis wind turbines: a survey and bibliography, Wind Eng. 11(6):334-343.
[59] Noll, R.B., Ham, N.D. (1982). Effects of dynamic stall on SWECS, J. Sol. Energy Eng. 104:96-101.
[60] Paraschivoiu, I. (2002). Wind Turbine Design with Emphasis on Darrieus Concept, Polytechnic International Press.
[61] Tsang, K.K.Y., So, R.M.C., Leung, R.C.K., Wang, X.Q. (2008). Dynamic stall behavior from unsteady force measurements, J. Fluids and Structures 24:129-150.
[62] Ho, C.M., Chen, S.H. (1981). Unsteady wake of a plunging airfoil, AIAA J. 19(11):1492-1494.
[63] Chang, J.W., Eun, H.B. (2003). Reduced frequency effects on the near-wake of an oscillating elliptic airfoil, KSME International J. 17(8):1234-1245.
[64] Laneville A., Vittecoq, P. (1986). Dynamic stall: The case of the vertical axis wind turbine, J. Solar Energy Eng. 108:140-145.
[65] Ervin, A., Christian, P., Thierry, M. (2006). A numerical approach for estimating the aerodynamic characteristics of a two bladed vertical Darrieus wind turbine, Proc. the 2nd Workshop on Vortex Dominated Flows 95-102.
[66] Migliore, P.G., Wolfe, P.G., Fanucci, J.B. (1980). Flow curvature effects on Darrieus turbine blade aerodynamics. J. Energy 4:49-55.
[67] Mays, I., Holmes, B.A. (1979). Commercial development of the variable geometry vertical axis windmill. International Power Generation, Surrey, UK.
[68] Templin, R.J. (1974). Aerodynamic performance theory for the NRC vertical-axis wind turbine, National Research Council, Canada, National Aeronautical Establishment Laboratory Technical Report LTR-LA-160.
[69] Baker, J.R. (1983). Features to aid or enable self-starting of fixed pitch low solidity vertical axis wind turbines, J. Wind Eng. & Ind. Aerody. 15:369-380.
[70] Abbott, I.A., Von Doenhoff, A.E. (1959) Theory of Wing Sections, Dover Pub.
[71] Jacobs, E.N., Sherman, A. (1937). Airfoil section characteristics as affected by variations of the Reynolds number. NACA 23rd Annual Report 586:227-264.
[72] Sheldahl, R.E., Klimas, P.C. (1981). Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines, Albuquerque: Sandia National Laboratories, Report No: SAND80-2114.
[73] Ostowari, C., Naik, D. (1985). Post-stall wind tunnel data for NACA 44xx series airfoil sections, SERI/US Dept of Energy Report SERI/STR-217-2559.
[74] Kirke, B.K., Lazauskas, L. (1991). Enhancing the performance of a vertical axis wind turbine using a simple variable pitch system, Wind Eng. 15(4):187-195.
[75] Claessens, C. (2006). The design and testing of airfoils for application in small vertical axis wind turbines, MS Thesis, TU Delft.
[76] Paraschivoiu, I., Delclaux F. (1983). Double multiple streamtube model with recent improvements, J. Energy 7:250–255.
[77] Yakhot, V., Orszag, S.A. (1986). Renormalization group analysis of turbulence: I. basic theory, J. Scientific Computing 1(1):1-51.
[78] Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z., Zhu, J. (1995). A new k-ε eddy-viscosity model for high Reynolds number turbulent flows - model development and validation, Computers and Fluids 24(3):227-238.
[79] Launder, B.E., Spalding, D.B. (1972). Lectures in Mathematical Models of Turbulence, Academic Press.
[80] ANSYS (2009). ANSYS FLUENT user’s guide, ANSYS, Inc.
[81] Hahm, T., Kroning, J. (2002). In the wake of a wind turbine. FLUENT news no. 1:5-7, USA: FLUENT Inc.
[82] Ferreira, C.S., Bussel G.V., Kuik G.V. (2007). 2D CFD simulation of dynamic stall on a vertical axis wind turbine: verification and validation with PIV measurements, AIAA Aerospace Sciences Meeting and Exhibit/ASME Wind Energy Symposium 45:16191-16201.