| 研究生: |
廖詩芳 Shih-Fang Liao |
|---|---|
| 論文名稱: |
台灣藍鵲與藍腹鷴羽毛結構色之光學模型 Optical Model for Structural Color of Feathers of Taiwan Blue Magpie and Swinhoe’s Pheasant |
| 指導教授: |
李正中
Cheng-Chung Lee |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2015 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 結構色 、光子晶體 、嚴格耦合波分析法 、二維傅氏分析 、準有序奈米結構 |
| 外文關鍵詞: | structural color, photonic crystal, rigorous coupled-wave analysis (RCWA), two-dimensional Fourier analysis, quasi-ordered nanostructure |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
地球上有許多具富麗色彩的物種;其中鳥類的羽毛富有最多樣以及美麗的色彩。羽毛的顏色對鳥類而言更是扮演許多重要的角色,包括增強羽毛硬度、保護羽毛避免細菌的侵蝕、調節體溫、隱匿、展示自我以及偽裝的功能。此外,顏色的品質也是鳥隻營養狀況的指標之一;由羽支內的結構所產生的結構色,較色素色更能在吸引配偶以及同性間的競爭方面造成影響。特別是雄鳥身上的紫外光結構色,更為雌鳥所吸引。因此,在此研究中,我們試圖去了解鳥類羽毛中,產生藍紫結構色的物理機制,並建立其對應的數學模型。
本文選擇兩種台灣特有鳥類的藍色羽毛,作為研究對象:藍腹鷴(俗稱台灣山雞)與台灣藍鵲(俗稱長尾山娘)。在雄性藍腹鷴的藍色腰羽上,有一段特殊的虹彩色:其開放式正羽的部分,被分成兩個區域(外側與內側)─隨入射光角度改變,而有不同的反射強度。光源正向入射時,外側的開放式正羽反射較強;但隨著入射光角度增加,高反射發生的位置則漸漸移往內側的開放式正羽。儘管這兩個區域的小羽支內部的黑色素柱,其排列方式具有相似的二維類光子晶體奈米結構。但本研究發現:這兩個區域反射強度的差異,來自個別的小羽支與羽支間的夾角不同;且此角度由開放式正羽的外側往內側呈連續性變化。根據小羽支內的奈米結構,本研究採用多層嚴格耦合波分析法,來研究其反射現象;不論是正向入射光,或是斜向入射光,最後模擬得到的結果,皆與量測的結果、以及肉眼看到的視覺效果互相吻合。
與具有顯著虹彩色的雄性藍腹鷴腰羽不同,台灣藍鵲身上的藍色羽毛,其虹彩色在視角低於四十度時,並不是那麼明顯;而且台灣藍鵲羽毛的藍色,來自於羽支內部的奈米生物結構─海綿狀的髓角蛋白。本研究針對羽支不同位置內,髓角蛋白的穿透式電子顯微鏡影像,進行二維傅氏分析,來解釋其特殊虹彩色變化的原因。研究結果發現:羽支內的髓角蛋白為準有序的排列方式,且此奈米結構的方位,隨羽支的位置不同而變化。本文預測的反射率變化,與量測得到的結果相當接近─越遠離羽支頂點,其羽毛的反射率越高;因此當視角越大時,所看到的羽色越藍、越亮。
本論文成功地為分別來自羽支與小羽支內部奈米結構,所產生兩種不同的虹彩色,提供兩種光學模型來闡述其光學特性。
There is a great diversity of species on the earth; among them birds have the amazing and multiple colors, especially on their plumage. The colors of feathers play several important roles for birds, such as hardness of feather enhancement, protection from the erosion of feather by bacteria, thermoregulation, concealment, advertisement, and disguise. In addition, color can serve as an indicator of nutrition condition of birds. As a result, color is also a criterion of mate choice and competition to others of the same sex, especially for structural color. Particularly, there are high associations between ultra-violet color and courtship display. Therefore, in this research, we have explained the physical mechanism of the structural blue-violet coloration in birds’ feathers and build the corresponding mathematical models.
Blue feathers of two endemic avian species in Taiwan are chosen in this study, Swinhoe’s pheasant (Lophura swinhoii), and Taiwan blue magpie (Urocissa caerulea). A range of iridescent color appearances are presented by male Swinhoe’s pheasants’ mantle feathers. Two distinct regions of the open pennaceous portion of its feathers display particularly conspicuous angle-dependent reflection. A bright blue band appears in one region at normal incidence that spatially shifts to another at higher illumination angles. The two-dimensional photonic crystal-like nanostructures, melanin rods, inside the barbules of these two regions are similar. However, this study found that the spatial variation in their color appearance results from a continuously changing orientation of barbules with respect to the alignment of their associated barb. A multi-layered rigorous coupled-wave analysis approach was used to model the reflections from the identified intra-barbule structures. Well matched simulated and measured reflectance spectra, at both normal and oblique incidence, support our elucidation of the origin of the bird’s distinctive feather color appearance.
Different to the conspicuous iridescence in Swinhoe’s pheasant’s mantle feather, the iridescence of the blue feathers of the Taiwan blue magpie is not obvious when the viewing angle is less than 40-degree. In addition, the biomaterial, medullary keratin, producing the blue color of Taiwan blue magpie exists inside the barbs rather than barbules. The spongy medullary keratin inside the feather barbs is investigated by two-dimensional Fourier analysis of transmission electron microscopic images of various positions on a barb to explain this unique characteristic. The orientation of the quasi-ordered nanostructure varies depending on its position of the feather barb. The predicted reflectance increases with the distance of the nanostructures from the vertex of the feather barb, and this results agrees closely with measurements.
This research provides two optical models to elucidate two different iridescent colorations from nanostructures in barbs and barbules of bird’s feathers successfully.
[1] Darwin, C. 1859. On the origin of species by means of natural selection. London: John Murray.
[2] Bortolotti, G. R. 2006. Natural selection and coloration: protection, concealment, advertisement, or deception? In Bird Coloration II: Function and Evolution (ed. Hill, G. E. and Mcgraw, K. J.), pp. 3-35. London: Harvard University press.
[3] Darwin, C. 1871. The descent of man and selection in relation to sex. London: John Murray.
[4] Wallace, A. R. 1889. Darwinism. London: Macmillan
[5] Burtt, E. H., and Jr. 1981. The adaptiveness of animal colors. Bioscience 31: 723-729.
[6] Burtt, E. H., and Jr. 1986. An analysis of physical, physiological, and optical aspects of avian coloration with emphasis on wood-warblers. Ornithol Monogr 38: 1-126.
[7] Bonser, R. H. C. 1995. Melanin and the abrasion resistance of feathers. Condor 97: 590-591.
[8] Butler, M., and Johnson, A. S. 2004. Are melanized feather barbs stronger? J. Exp. Biol. 207: 285-293.
[9] Grande, J. M., Negro, J. J., and Torres, M. J. 2004. The evolution of bird plumage colouration: A Role for Feather-degrading bacteria? Ardeola 51: 375-383.
[10] Wolf, B. O., and Walsberg, G. E. 2000. The role of the plumage in heat transfer processes of birds. Am. Zool. 40: 575-584.
[11] Senar, J. C. 2006. Color displays as intrasexual signals of aggression and dominance. In Bird Coloration II: Function and Evolution (ed. Hill, G. E. and Mcgraw, K. J.), pp. 87-136. London: Harvard University press.
[12] Hill, G. E. 2006. Female mate choice for ornamental coloration. In Bird Coloration II: Function and Evolution (ed. Hill, G. E. and Mcgraw, K. J.), pp. 137-200. London: Harvard University press.
[13] Bradbury, J. W. and Davies, N. B. 1987. Relative roles of intra- and intersexual selection. In Sexual Selection: Testing the Alternatives (ed. Bradbury, J. W. and Andersson, M. B.), pp. 143-163. UK: Wiley.
[14] Andersson, M. 1994. Sexual Selection, NJ: Princeton University Press.
[15] Berglund, A., Bisazza, A., and Pilastro, A. 1996. Armaments and ornaments: An evolutionary explanation of traits of dual utility. Biol. J. Linn. Soc. 58: 385-399.
[16] Rohwer, S. A. 1975. The social significance of avian winter plumage variability. Evolution 29: 593:610.
[17] Rohwer, S. A. 1977. Status signaling in Harris’ Sparrows: Some experiments in deception. Behaviour 61: 107-129.
[18] Rohwer, S. A. 1978. Reply to Shields on avian winter plumage variability. Evolution 32: 670-673.
[19] Whitfield, D. P. 1987. Plumage variability, status signaling and individual recognition in avian flocks. Trend. Ecol. Evol. 2: 13-18.
[20] Blaisdell, M. L. 1992. Darwinism and its data: the adaptive coloration of animals. New York: Garland Publishing.
[21] Cronin, H. 1991. The ant and the peacock. Cambridge: Cambridge University Press.
[22] Hausmann, F., Arnold, K. E., Marshall, N. J., and Owens, I. P. F. 2003. Ultraviolet signals in birds are special. Proc. Roy. Soc. Lond. B 270: 61-67.
[23] Cuthill, I. C. 2006. Color Perception. In Bird Coloration I: Mechanisms and Measurements (ed. Hill, G. E. and Mcgraw, K. J.), pp. 3-40. London: Harvard University press.
[24] Bowmaker, J. K., Heath, L. A., Wilkie, S. E., and Hunt, D. M. 1997. Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds. Vision Res. 37: 2183-2194.
[25] Cuthill, I. C., Partridge, J. C., Bennett, A. T. D., Church, S. C., Hart, N. S., and Hunt, S. 2000. Ultraviolet vision in birds. Adv. Stud. Behav. 29: 159-214.
[26] McGraw, K. J. 2006. Mechanics of Carotenoid-Based Coloration. In Bird Coloration I: Mechanisms and Measurements (ed. Hill, G. E. and Mcgraw, K. J.), pp. 177-242. London: Harvard University press.
[27] McGraw, K. J. 2006. Mechanics of Melanin-Based Coloration. In Bird Coloration I: Mechanisms and Measurements (ed. Hill, G. E. and Mcgraw, K. J.), pp. 243-294. London: Harvard University press.
[28] Prum, R. O. 2006. Anatomy, Physics, and Evolution of Structural Colors. In Bird Coloration I: Mechanisms and Measurements (ed. Hill, G. E. and Mcgraw, K. J.), pp. 295-353. London: Harvard University press.
[29] Stavenga, D. G., Tinbergen, J., Leertouwer, H. L., Wilts, B. D. 2011. Kingfisher feathers – colouration by pigments, spongy nanostructures and thin films. J. Exp. Biol. 214: 3960-3967.
[30] Yoshioka, S., Nakamura, E., and Kinoshita, S. 2007. Origin of two-iridescence in rock dove’s feather. J. Phys. Soc. Jpn. 76: 013801.
[31] Vukusic, P. and Sambles, J. R. 2004. Photonic structures in biology. Nature 424: 852-856.
[32] Ghiradella, H. T. and Butler, M. W. 2009. Many variations on a few themes: a broader look at development of iridescent scales (and feathers). J. R. Soc. Interface 6: S243-S251.
[33] Prum, R. O., Torres, R., Williamson, S., and Dyck, J. 1999. Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs. Proc. R. Soc. Lond. B 266: 13-22.
[34] Vukusic, P. 2004. Natural photonics. Physics World 17: 35-39.
[35] Doucet, S. M., Shawkey, M. D., Hill, G. E., and Montgomerie, R. 2006. Iridescent plumage in stain bowerbirds: structure, mechanisms and nanostructural predictors of individual variation in colour. J. Exp. Biol. 209: 380-390.
[36] Yin, H., Shi, L., Sha, J., Li, Y., Qin, Y., Dong, B., Meyer, S., Liu, X., Zhao, L., and Zi, J. 2006. Iridescence in the neck feathers of domestic pigeons. Phys. Rev. E 74: 051916.
[37] Yin, H., Dong, B., Liu, X., Zhan, T., Shi, L., Zi, J., and Yablonovitch, E. 2012. Amorphous diamond-structured photonic crystal in the feather barbs of the scarlet macaw. PNAS 109: 10798-10801.
[38] Yu, M., Wu, P., Widelitz, R. B., and Chuong, C. M. 2002. The morphogenesis of feathers. Nature 420: 308-312.
[39] Zi, J., Yu, X., Li, Y., Hu, X., Xu, C., Wang, X., Liu, X., and Fu, R. 2003. Coloration strategies in peacock feathers. PNAS 100: 12576-12578.
[40] Maia, R., Caetano, J. V. O., Bao, S. N., and Macedo, R. H. 2009. Iridescent structural colour production in male blue-black grassquit feather barbules: the role of keratin and melanin. J. R. Soc. Interface 6: S203-S211.
[41] Wilts, B. D., Michielsen, K., Raedt, H. D., and Stavenga, D. G. 2014. Sparkling feather reflections of a bird-of-paradise explained by finite-difference time-domain modeling. PNAS 11: 4363-4368.
[42] Stavenga, D. G., Leertouwer, H. L., Marshall, N. J., and Osorio, D. 2011. Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules. Proc. R. Soc. B 278: 2098-2104.
[43] Vigneron, J. P., Colomer, J. F., Rassart, M., Ingram, A. L., and Lousse, V. 2006. Structural origin of the colored reflections from the black-billed magpie feathers. Phys. Rev. E 73: 021914.
[44] Finger, E. 1995. Visible and UV coloration in birds: Mie scattering as the basis of color in many bird feathers. Naturwiss 82: 570-573.
[45] Dyck, J. 1971. Structure and spectral reflectance of green and blue feathers of the lovebird (Agapornis roseicollis). Biol. Skr. 18: 1-67.
[46] Dyck, J. 1971. Structure and colour-production of the blue barbs of Agapornis roseicollis and Cotinga maynana. Z. Zellforsch. 115: 17-29.
[47] Prum, R. O., Torres, R. H., Williamson, S., and Dyck, J. 1998. Coherent light scattering by blue feather barbs. Nature 396: 28-29.
[48] Benedek, G. B. 1971. Theory of transparency of the eye. Appl. Optics 10: 459-473.
[49] Shawkey, M. D., Balenger, S. L., Hill, G. E., Johnson, L. S., Keyser, A. J., and Siefferman, L. 2006. Mechanisms of evolutionary change in structural plumage coloration among bluebirds (Sialia spp.). J. R. Soc. Interface 3: 527-532.
[50] Prum, R. O., Cole, J. A., and Torres, R. 2004. Blue integumentary structural colours in drangonflies (Odonata) are not produced by incoherent Tyndall scattering. J. Exp. Biol. 207: 3999-4009.
[51] Prum, R. O. and Torres, R. H. 2003. A Fourier tool for the analysis of coherent light scattering by bio-optical nanostructures. Integr. Comp. Biol. 43: 591-602.
[52] Prum, R. O. and Torres, R. 2003. Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays. J. Exp. Biol. 206: 2409-2429.
[53] 桃園縣野鳥學會。https://www.facebook.com/TaoYuanXianYeNiaoXueHui
[54] 特有生物研究保育中心。http://www.coa.gov.tw/view.php?catid=8740
[55] Prum, R. O. and Brush, A. H. 2002. The evolutionary origin and diversification of feathers, Q. Rev. Biol., 77: 261-295.
[56] Li, Y., Lu, Z., Yin, H., Yu, X., Liu, X., and Zi, J. 2005. Structural origin of the brown color barbules in male peacock tail feathers. Phys. Rev. E 72: 010902(R).
[57] Eliason, C. M. and Shawkey, M. D. 2012. A photonic heterostructure produces diverse iridescent colours in duck wing patches. J. R. Soc. Interface 9: 2279-2289.
[58] Khudiyev, T., Dogan, T., and Bayindir, M. 2014. Biomimicry of multifunctional nanostructures in the neck feathers of mallard (Anas platyrhynchos L.) drakes, Sci. Rep. 4: 4718.
[59] Shawkey, M. D., Estes, A. M., Siefferman, L. M., and Hill G. E. 2003. Nanostructure predicts intraspecific variation in ultraviolet-blue plumage colour. Proc. R. Soc. Lond. B 270: 1455-1460.
[60] Andersson, S. and Prager, M. 2006. Quantifying Colors. In Bird Coloration I: Mechanisms and Measurements (ed. Hill, G. E. and Mcgraw, K. J.), pp. 41-89. London: Harvard University press.
[61] Fairchild, M. D. 2005. Color appearance phenomena. In Color Appearance Models (2nd ed.), Wiley.
[62] Moharam, M. G., Grann, E. B., Pommet D. A., and Gaylord, T. K. 1995. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings, J. Opt. Soc. Am. A. 12: 1068-1076.
[63] Li, L. and Haggans, W. 1993. Convergence of the coupled-wave method for metallic lamellar diffraction gratings. J. Opt. Soc. Am. A. 10: 1184-1189.
[64] Moharam, M. G., Pommet D. A., Grann, E. B., and Gaylord, T. K. 1995. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach. J. Opt. Soc. Am. A. 12: 1077-1086.
[65] MATLAB. 1992. MATLAB Reference Guide. (Natick: The Mathworks, Inc.)
[66] Gray, R. M. 1971. Toeplitz and circulant matrices: a review. CA: Stanford University.
[67] K. Pavel, Czech Technical University in Prage, Optical Physics Group, Czech Republic.
[68] Goldman, J. N. and Benedek, G. B. 1967. The relationship between morphology and transparency in the nonswelling corneal stroma of the shark. Invest. Ophthalmol. 6: 574-600.
[69] Goldman, J. N., Benedek, G. B., Dohlman, C. H., and Kravitt, B. 1968. Structural alterations affecting transparency in swollen human corneas. Invest. Ophthalmol. 7: 501-519.
[70] Hart, R. W. and Farrell, R. A. 1969. Light scattering in the cornea. J. Opt. Soc. Am. 59: 766-774.
[71] Van de Hulst, H. C. 1957. Light scattering by Small Particles. New York: Wiley.
[72] Land, M. F. 1972. The physics and biology of animal reflectors. Prog. Biophys. Molec. Biol. 24: 75-106.
[73] Brink, D. J. and ven der Berg, N. G. 2004. Structural colours from the feathers of the bird Bostrychia hagedash. J. Phys. D: Appl. Phys. 37: 813-818.
[74] Stavenga, D. G., Leertouwer, H. L., Hariyama, T., Raedt, H. A. D., and Wilts B. D. 2012. Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins. PLOS ONE 7: e49743.
[75] Khudiyev, T., Dogan, T., and Bayindir, M. 2014. Biomimicry of multifunctional nanostructures in the neck feathers of mallard (Anas platyrhynchos L.) drakes. Sci. Rep. 4: 4718.
[76] Gonzalez, R. C., Woods, R. E., and Eddins, S. L. 2009. Digital Image Processing using MATLAB. Gatesmark.
[77] Gonzalez, R. C. and Woods, R. E. 2002. Digital Image Processing. New Jersey: Prentice Hall.
[78] Shawkey, M. D., Saranathan,V., Pálsdóttir, H., Crum, J., Ellisman, M. H., Auer, M. and Prum, R. O. 2009. Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure. J. R. Soc. Interface 6: S213.
[79] Noh, H., Liew, S. F., Saranathan, V., Mochrie, S. G. J., Prum, R. O., Dufresne, E. R. and Cao, H. 2010. How noniridescent colors are generated by quasi-ordered structures of bird feathers. Adv. Mater. 22: 2871-2880.
[80] Alba, L. D’, Saranathan, V., Clarke, J. A., Vinther, J. A., Prum, R. O. and Shawkey, M. D. 2011. Colour-producing nanofibres in blue penguin (Eudyptula minor) feathers. Biol. Lett. 7: 543-546.
[81] Saranathan, V., Forster, J. D., Noh, H., Liew, S. F., Mochrie, S. G., Cao, H., Dufresne, E. R. and Prum, R. O. 2012. Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 230 bird species. J. R. Soc. Interface 9: 2563-2580.
[82] Takeoka, Y. 2012. Angle-independent structural coloured amorphous arrays. J. Mater. Chem. 22: 23299-23309.
[83] Wiersma, D. S., 2013. Disordered photonics. Nat. Photon. 7: 188-196.
[84] Shi, L., Zhang, Y., Dong, B., Zhan, T., Liu, X., and Zi J. 2013. Amorphous photonic crystals with only short-range order. Adv. Mater. 25: 5314-5320.
[85] Takeoka, Y., Honda, M., Seki, T., Ishii, M., and Nakamura, H. 2009. Structural colored liquid membrane without angle dependence. Appl. Mater. Interfaces 5: 982-986.
[86] Ueno, K., Sano, Y., Inaba, A., Kondoh, M., and Watanabe, M. 2010. Soft glassy colloidal arrays in an ionic liquid: colloidal glass transition, ionic transport, and structural color in relation to microstructure. J. Phys. Chem. B 114: 13095-13103.
[87] Forster, J. D., Noh, H., Liew, S. F., Saranathan, V., Schreck, C. F., Yang, L., Park, J. G., Prum, R. O., Mochrie, S. G. J., O’Hern, C. S., Cao, H., and Dufresne, E. R. 2010. Biomimetic isotropic nanostructures for structural coloration. Adv. Mater. 22: 2939-2946.
[88] Dufresne, E. R., Noh, H., Saranathan, V., Mochrie, S. G. J., Cao, H., and Prum, R. O. 2009. Self-assembly of amorphous biophotonic nanostructures by phase separation. Soft Matter 5: 1792-1795.
[89] Shi, L., Yin, H., Zhang, R., Liu, X., Zi, J., and Zhao, D. 2009. Macroporous oxide structures with short-range order and bright structural coloration: a replication from parrot feather barbs. J. Mater. Chem 20: 90-93.
[90] Edagawa, K., Kanoko, S., and Notomi, M. 2008. Photonic amorphous diamond structure with a 3D photonic band gap. Phys. Rev. Lett. 100: 013901.
[91] Khudiyev, T., Dogan, T., and Bayindir, M. 2014. Biomimicry of multifunctional nanostructures in the neck feathers of mallard (Anas platyrhynchos L.) drakes. Sci. Rep. 4: 4718.
[92] Steele, J. J. and Brett, M. J. 2007. Nanostructure engineering in porous columnar thin films: recent advances. J. Mater. Sci. 18: 367-379.
[93] Jensen, M. O. and Brett, M. J. 2005. Periodically structured glancing angle deposition thin films. IEEE Trans. Nanotechnol. 4: 269-277.
[94] Jen, Y. J. and Lin, C. F. 2008. Anisotropic optical thin films finely sculptured by substrate sweep technology. Opt. Express 16: 5372-5377.
[95] Jen, Y. J., Lin, C. F., and Lin, M. J. 2011. Slanted S-shaped nano-columnar thin films for broadband and wide-angle polarization conversion. Opt. Mater. Express 1: 525-534.
[96] Jensen, M. O. and Brett, M. J. 2005. Porosity engineering in glancing angle deposition thin films. Appl. Phys. A-Mater. 80: 763-768.