| 研究生: |
陳冠宏 Kuan-hung Chen |
|---|---|
| 論文名稱: |
應用於高效率單電子元件鍺量子點之研製:鍺量子點定位與定量之探討 Positioning and numbering Ge quantum dots for effective single-electrondevices |
| 指導教授: |
李佩雯
Pen-wen Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 奈米溝渠 、矽鍺 、量子點 |
| 外文關鍵詞: | quantum dots, nanotrench, selective oxdiation |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究討論利用選擇性氧化複晶矽鍺形成鍺量子點的技術。以及調變奈米溝渠
的幾何結構,有效地控制鍺量子點顆數與位置。鍺量子點形成的位置與複晶矽鍺的氧化截止點有強烈的相關性,利用不同的奈米溝渠側壁(二氧化矽材料或氮化矽)材料與溝渠的大小,可以有效地控制鍺量子點形成的位置。當奈米溝渠側壁為二氧化矽且寬度在30nm 以下時,可觀察到單一顆球形的單晶鍺量子點分布在奈米溝渠的中間,量子點大小為12.5±2.8 nm。在寬度同樣為小於30 nm,而奈米溝渠側壁為氮化矽的條件下,鍺量子點的分布則是隨機的,有的分布在奈米溝渠的中間,有的則在奈米溝渠的邊緣,量子點大小為9.7±1.5 nm。當奈米溝渠寬度為50 nm 或70 nm 時,不論是側壁為氮化矽還是二氧化矽,這兩個條件的鍺量子點皆分布在奈米溝渠的兩側邊緣,其鍺量子點大小分別為11.4±0.9 nm 與8.3±1.4 nm。利用此方法,我們可以氧化奈米溝渠中的複晶矽鍺,形成單一顆鍺量子點供單電子電晶體應用;或兩顆鄰近的量子點做為偶合量子點之用。
This thesis demonstrates that controlling the position and the number of Ge quantum dots (QDs) embedded in SiO2 or Si3N4 tunnel barriers in a self-organized manner is realized by oxidizing SiGe nano-trenches. A single Ge QD in the core or double QDs at the edges of oxidized SiGe trenches could be effectively modulated by the trench geometry and the materials adopted for spacer and bottom layers. For SiGe trenches with SiO2 spacers having an trench width of less than 30 nm, Ge QDs line up in the center of oxidized trenches with an average dot size of 12.5 ± 2.8 nm. In contrast, for SiGe trenches with Si3N4 spacers having the same trench width, smaller Ge QDs (9.7 ±?1.5 nm) reside randomly either in the center or near the edges of oxidized trenches. For SiGe trenches with width of 50 or 70 nm, we observed remarkable twin Ge QDs precipitation closely along each boundary between the trench and the nearby SiO2 and Si3N4 spacers, respectively, with an average dot size of 11.4 ± ?0.9 nm and 8.3 ±?1.4 nm. Using this method, it is reasonable to expect that effective single-electron transistors and coupled QD devices could be realized.
[1] 陳啟東,「單電子電晶體簡介」,物理雙月刊,第二十六卷,第三期,483-490頁,2004年6月。
[2] Y. Takahashi et al., “Silicon single-electron devices and their applications,” inIEEE Int. Symp. ISMVL, p. 411, 2000.
[3] Y. Nakamura, D. L. Klein, and J. S. Tsai, “Al/Al2O3/Al single electron transistors operable up to 30 K utilizing anodization controlled miniaturization enhancement,” Appl. Phys. Lett., Vol. 68, p. 275, 1996.
[4] W. Chen, H. Ahmed and K. Nakazato, “Coulomb blockade at 77 K in nanoscale metallic islands in a lateral nanostructure,” Appl. Phys. Lett., Vol. 66, p. 3383, 1995.
[5] D. L. Klein, P. L. McEuen, J. E. B. Katari, R. Roth, and A. P. Alivisatos,” An approach to electrical studies of single nanocrystals,” Appl. Phys. Lett., Vol. 68, p. 2574, 1996.
[6] Matsumoto, K., “STM/AFM nano-oxidation process to room- temperature- operated single-electron transistor and other devices,” Processdings of the IEEE, Vol. 14, p. 612, 1997.
[7] M. E. Rubin et al., “Imaging and Spectroscopy of Single InAs Self-Assembled Quantum Dots using Ballistic Electron Emission Microscopy,” Phys. Rev. Lett., Vol. 77, p. 5268, 1996.
[8] Yasuo Takahashi, Hideo Namatsu and Kenji Kurihara, “Size Dependence of the characteristics of Si single electron transistors on SIMOX substrates,” Electron Devices IEEE Trans., Vol. 43, p. 1213, 1996.
[9] Masumi Saitoh, Hidehiro Harata, Toshiro Hiramoto, “Room-temperature demonstration of low-voltage and tunable static memory based on negative differential conductance in silicon single-electron transistors,” Appl. Phys. Lett., Vol. 85, p. 6233, 2004.
[10] Sejoon Lee et al., “Extremely high flexibilities of Coulomb blockade and negative differential conductance oscillations in room-temperature-operating silicon single hole transistor,” Appl. Phys. Lett., Vol. 92, p. 073502, 1998.
[11] Effendi Leobandung, Lingjie Guo, Yun Wang, and Stephen Y. Chou, “Single hole quantum dot transistors in silicon,” Appl. Phys. Lett., Vol. 67, p. 2338, 1995
[12] Effendi Leobandung, Lingjie Guo, and Stephen Y. Chou, “Observation of quantum effects and Coulomb blockade in silicon quantum-dot transistors at temperatures over 100 K,” Appl. Phys. Lett., Vol. 67, p. 938, 1995
[13] M. Saitoh, H. Harata and T. Hiramoto, “Room-temperature demonstration of integrated silicon single-electron transistor circuit for current switching and analog pattern matching,” in IEDM Tech Dig., p. 187, 2004.
[14] W. T. Lai and P. W. Li, “Growth kinetics and related physical/electrical properties of Ge quantum dot formed by thermal oxidation of Si1-xGex-on-insulator,” Nanotechnol., Vol. 18, p. 145402, 2007.
[15] P. W. Li, W. M. Liao, David M. T. Kuo, and S. W. Lin, “Fabrication of a germanium quantum-dot single-electron transistor with large Coulomb-blockade oscillations at room temperature,” Appl. Phys. Lett., Vol. 85, p. 1532, 2004.
[16] P. W. Li, David M. T. Kuo, W. M. Liao, and W. T. Lai, “Study of tunneling currents through germanium quantum-dot single-hole and –electron transistors,” Appl. Phys. Lett., Vol. 88, p. 213117, 2006.
[17] Masumi Saitoh and Toshiro Hiramoto, ”Observation of current staircase due to large quantum level spacing in a silicon single-electron transistor with low parasitic series resistance,” J. Appl. Phys., Vol. 91, p. 6725, 2002.
[18] Lei Zhuang, Lingjie Guo, and Stephen Y. Chou, “Silicon single-electron quantum-dot transistor switch operating at room temperature,” Appl. Phys. Lett., Vol. 72, p. 1025, 1998
[19] Masaharu Kobayashi and Toshiro Hiramoto, “Experimental study on quantum confinement effects in silicon nanowire metal-oxide-semiconductor field-effect transistors and single-electron transistors,” J. Appl. Phys, Vol. 103, p. 053709, 2008
[20] 莊達人編著, “VLSI 製造技術”, 第六章.
[21] M. Nagase, A. Fujiwara, K. Yamazaki, Y. Takahashi, K. Murase and K. Kurihara, “Si nanostructures formed by pattern-dependent oxidation,” Microelectronic Engineering, Vol. 41, p. 527, 1998
[22] M. Uematsu , H. Kageshima , K. Shiraishi , M. Nagase,S. Horiguchi a, Y. Takahashi, “Two-dimensional simulation of pattern-dependent oxidation of silicon nanostructures on silicon-on-insulator substrates,” Solid-State Electronics, Vol. 48, p. 1073, 2004
[23] Donald A. Neamen, “Semiconductor Physics & Devices,”