跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王慶奇
Ching-Chi Wang
論文名稱: 利用奈米圖案技術形成三維鍺量子點陣列的研製及其特性分析
Formation and characterization of three-dimensional Ge QDs array on nano-patterned SiGe pillar structures
指導教授: 李佩雯
Pei-Wen Li
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 104
中文關鍵詞: 奈米圖案定義鍺量子點鍺量子點陣列
外文關鍵詞: germanium quantum dot, nanopatterning, germanium quantum dots array
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研發與現今矽製程技術相容的三維鍺量子點陣列系統之形成方法。利用選擇性氧化複晶矽鍺可形成鍺量子點的技術,佐以奈米矽鍺柱狀結構的設計與實作,得以有效地控制鍺量子點的尺寸、數量與位置,進而實作出三維鍺量子點/二氧化矽/氮化矽陣列。分別利用掃描式電子顯微鏡、穿透式電子顯微鏡、陰極激發光光譜與拉曼光譜等物性與光性檢測技術來多面向地分析探討量子點的尺寸、位置、顆數、晶格結構/形變與吸/放光能力。同時也對此三維鍺量子點系統未來應用於太陽能光伏特電池與熱電元件的構想提出初步的評估與探討,預期可提高其能量轉換效益,使元件的特性最佳化。


    The main theme of the thesis is to develop a COMS compatible process of three-dimensional (3D) germanium quantum dots (Ge QDs) array system. Using a simple method, “selectivity oxidation of polycrystalline SiGe” to form Ge QDs, combined with design and experiment of nano-patterned SiGe pillar structure to effectively control size, number and position of the Ge QDs. Then, we can fabricate a three-dimensional Ge QDs / silicon dioxide / silicon nitride arrays. We have studied the internal structure and optical properties of 3D Ge QDs array using scanning electron microscopy (SEM), transmission electron microscope (TEM), cathodoluminescence (CL) and Raman spectroscopy. In the future, we need to tailor 3D dense and size-tunable Ge QDs array, expect to boost the efficiency and optimize the device characteristics of solar cells and thermoelectric devices.

    目 錄 中文摘要 i 英文摘要 ii 致謝 iii 目錄 v 圖目錄 vii 表目錄 xiv 第一章 簡介與研究動機 ……………………………… 01 1-1 何謂量子點及其發展性 ………………………………………… 01 1-2 多量子點系統的製備材料及其形成方式 ……………………… 02 1-3 研究動機 ………………………………………………………… 05 第二章 奈米定位製程技術之開發 …………………… 16 2-1 前言 ……………………………………………………………… 16 2-2 高密度柱子陣列之蝕刻製程開發 ……………………………… 16 2-2-1 簡介蝕刻製程參數 ………………………………………… 16 2-2-2 單晶矽之蝕刻條件建立 …………………………………… 20 2-2-3 不同鍺濃度的複晶矽鍺奈米串珠陣列之蝕刻條件建立 … 22 2-2-4 氮化矽與複晶矽鍺堆疊結構之蝕刻條件建立 …………… 25 2-3 高密度柱子陣列之微影系統開發 ……………………………… 26 第三章 三維鍺量子點陣列的形成與分析 …………… 50 3-1 簡介鍺量子點陣列的分析方法與儀器 ………………………… 50 3-2 三維鍺量子點陣列的形成與分析 ……………………………… 51 3-2-1 串珠柱狀結構之鍺量子點陣列的形成與分析 …………… 51 3-2-2 魚骨柱狀結構之鍺量子點陣列的形成與分析 …………… 53 3-2-3 魚骨柱子結構之鍺量子點陣列的形成與分析 …………… 54 3-2-4 三維鍺量子點陣列之製備與形成狀況比較 ……………… 60 第四章 鍺量子點在不同介電質與幾何結構內的形成與探討 ……………………………………………… 73 4-1 鍺量子點在不同介電質內的形成與分析 ……………………… 73 4-1-1 鍺量子點在氮化矽內的形成與分析 ……………………… 73 4-1-2 鍺量子點在二氧化矽內的形成與分析 …………………… 74 4-2 鍺量子點在不同幾何結構內的氧化機制探討 ………………… 75 第五章 結論與未來展望 ……………………………… 80 5-1 結論 ……………………………………………………………… 80 5-2 三維鍺量子陣列的發展性 ……………………………………… 80 參考文獻 ………………………………………………… 83

    參考文獻
    [1] T. Takagahara et al., “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials”, Phys. Rev. B, Vol. 46, p. 15578, 1992.
    [2] J. See et al., “Comparison between a sp3d5 tight-binding and an effective-mass description of silicon quantum dots”, Phys. Rev. B, Vol. 66, p. 193307, 2002.
    [3] M. Saitoh et al., “Room-temperature operation of highly functional single-electron transistor logic based on quantum mechanical effect in ultra-small silicon dot”, IEEE IEDM Tech. Dig., p. 31.5.1, 2003.
    [4] G. L. Chen et al., “Tunneling spectroscopy of germanium quantum-dot in single-hole transistors with self-aligned electrodes”, Nanotechnology, Vol. 18, p. 475402, 2007.
    [5] O. Astafiev et al., “Single artificial-atom lasing”, Nature, Vol. 449, p. 588, 2007.
    [6] P. Bhattacharya et al., “Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature”, Appl. Phys. Lett., Vol. 86, p. 191106, 2005.
    [7] M. C. Beard et al., “Multiple exciton generation in colloidal Silicon nanocrystals”, Nano Lett., Vol. 7, p. 2506, 2007.
    [8] S. S. Tseng et al., “Photoresponses in poly-Si phototransistors incorporating germanium quantum dots in the gate dielectrics”, Appl. Phys. Lett., Vol. 93, p. 191112, 2008.
    [9] J. H. Chen et al., “Nonvolatile flash memory device using Ge nanocrystals embedded in HfAlO high-κ tunneling and control oxides: device fabrication and electrical performance”, Appl. Phys. Lett., Vol. 93, p. 191112, 2008.
    [10] M. A. Green, “Third generation photovoltaics-solar cells for 2020 and beyond”, Physica E, Vol. 14, p. 65, 2002.
    [11] S. Suraprapapich et al., “Quantum dot integration in heterostructure solar cells”, Solar Energy Materials & Solar Cells, Vol. 90, p. 2968, 2006.
    [12] B. Yang et al., “Measurements of anisotropic thermoelectric properties in superlattices”, Appl. Phys. Lett. Vol. 81, p. 3588, 2002.
    [13] T. M. Tritt, D. M. Rowe (Eds), Thermoelectrics handbook: macro to nano., ch23, CRC Press. New York, 2006.
    [14] H. Yusuf et al., “A hierarchical self-assembly route to three-dimensional polymer-quantum dot photonic arrays”, Langmuir, Vol. 23, p. 5251, 2007.
    [15] D. Grützmacher et al., “Three-dimensional Si/Ge quantum dot crystals”, Nano Lett., Vol. 7, p. 3150, 2007.
    [16] X. Qian et al., “Uniform InGaAs quantum dot arrays fabricated using nanosphere lithography”, Appl. Phys. Lett., Vol. 93, p. 231907, 2008.
    [17] K Das et al., “Growth of Ge islands and nanocrystals using RF magnetron sputtering and their characterization”, Nanotechnology, Vol. 18, p. 175301, 2007.
    [18] C. Y. Chien et al., “Formation of Ge quantum dots array in layer-cake technique for advanced photovoltaics”, Nanotechnology, Vol. 21, p. 505201, 2010.
    [19] W. Shockley et al., “Detailed balance limit of efficiency of p-n junction solar cells”, J. Appl. Phys., Vol. 32, p. 510, 1961.
    [20] A. J. Nozik, “Quantum dot solar cells”, Physica E, Vol. 14, p. 115, 2002.
    [21] K. Laouthaiwattana et al., “Optimization of stacking high-density quantum dot molecules for photovoltaic effect”, Solar Energy Materials & Solar Cells, Vol. 93, p. 746, 2009.
    [22] A. Alguno et al., “Enhanced quantum efficiency of solar cells with self-assembled Ge dots stacked in multilayer structure”, Appl. Phys. Lett., Vol. 83, p. 1258, 2003.
    [23] A. Alguno et al., “Effects of spacer thickness on quantum efficiency of the solar cells with embedded Ge islands in the intrinsic layer”, Appl. Phys. Lett., Vol. 84, p. 2802, 2004.
    [24] A. Alguno et al., “Influence of stacked Ge islands on the dark current–voltage characteristics and the conversion efficiency of the solar cells”, Thin Solid Films, Vol. 508, p. 402, 2006.
    [25] A. Khitun et al., “In-plane lattice thermal conductivity of a quantum-dot superlattice”, J. Appl. Phys., Vol. 88, p. 696, 2000.
    [26] 佳霖科技公司,「STS ICP ETCHER教學訓練資料」。
    [27] 邱燦賓等編著,「電子束微影技術」,科學發展月刊,第二十八卷第六期,423~434頁,89年3月。
    [28] A. V. Kolobov, “Raman scattering from Ge nanostructures grown on Si substrates: Power and limitations”, J. Appl. Phys., Vol. 87, p. 2926, 2000.
    [29] J. L. Liu et al., “Optical and acoustic phonon modes in self-organized Ge quantum dot superlattices”, Appl. Phys. Lett., Vol. 76, p. 586, 2000.
    [30] V. I. Mashanov et al., “Raman study of Si–Ge intermixing in Ge quantum rings and dots”, Physica E, Vol. 28, p. 531, 2005.
    [31] J. L. Liu et al., “Optical phonons in self-assembled Ge quantum dot superlattices: Strain relaxation effects”, J. Appl. Phys., Vol. 92, p. 6804, 2002.
    [32] W. L. Warren et al., “Structural identification of the silicon and nitrogen dangling‐bond centers in amorphous silicon nitride”, J. Appl. Phys., Vol. 70, p. 346, 1991.
    [33] H. H. Silvestri et al., “Diffusion of silicon in crystalline germanium”, Semicond. Sci. Technol., Vol. 21, p. 758, 2006.
    [34] 張宇瑞,「鍺量子點在氮化矽中的形成機制與鍺量子點可見光光二極體的研製」,國立中央大學,碩士論文,2011。
    [35] J. D. Plummer et al., Silicon VLSI technology., Prentice Hall, 2001.
    [36] B. Yu et al., “Nanotechnology: Role in emerging nanoelectronics”, Solid-State Electronics, Vol. 50, p. 536, 2006.

    QR CODE
    :::