| 研究生: |
簡中彥 Chung-yen Chien |
|---|---|
| 論文名稱: |
掩埋於氮化矽中的鍺量子點及應用於可見光光偵測器最佳工程化研究 Matrix Engineering of Ge Quantum-dot for Visible Photodetection Applications |
| 指導教授: |
李佩雯
Pei-wen Li |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 鍺 、量子點 、光偵測器 |
| 外文關鍵詞: | Germanium, Quantum dot, Photodiodes |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文系統性地探討了一個新穎的鍺量子點催化鄰近含矽層的氧化現象,以及其所產生的鍺量子點移動遷移行為。同時也研究了鍺量子點的內部結構、應力、光激發螢光譜線與光電特性。在此,我們提出一個矽溶入鍺量子點,再進一步擴散至量子點的尾端氧化的兩步驟機制來解釋所觀察到的鍺量子點在含矽層中移動的特殊現象。從氧化複晶矽鍺/氮化矽異質結構的實驗可知,鍺量子點的大小、形貌與空間分佈深深地受到氧化條件與鄰近區域是否有含矽層材料的存在影響。接著,透過溫度與光強度相依的光激發螢光譜線分析可知,熱應力與量子侷限效應的聯合用使鍺量子點具有準直接能隙的特性,並發出肉眼可見的螢光。
以鍺量子點為催化劑的兩階段分解與氧化含矽層的機制為基礎,我們發展了類似千層派堆疊氧化矽鍺的技術,並實作展示了一個簡單、可調控的方法來形成量子點大小均勻或漸變三維鍺量子點陣列。最後,我們也製作出了可調變偵測波長的鍺量子點金氧半光偵測器。此光偵測器的光暗電流比值與鍺量子點在閘介電層中的總體積和閘介電層的厚度息息相關。我們所製作出的鍺量子點金氧半光偵測器具有極低的暗電流(1.5×10-3 mA/cm2) 、優越的光暗電流比值(13500) 、高的光響應度(2.2 A/W) 和快的響應時間(5 ns) ,具有可直接與主流的矽基互補式金氧半電路的整合性。
This thesis demonstrates a novel migration phenomenon of Ge quantum dot (QD), which catalytically enhances the local oxidation of underlying silicon-containing layers during the planar oxidation of poly-Si1-xGex/Si3N4 heterostructures over the Si substrate. The internal structure, crystal morphology, and chemical composition of Ge QDs formed in this manner are systematically investigated, and consequently a two-step mechanism has been proposed to explain the unique migration behavior of Ge QDs in Si-containing layers. First, the Ge QD enhances the decomposition of Si-containing layers to release Si interstitials. Subsequently, released Si interstitials diffuse through the Ge QD or its surface and eventually get oxidized beyond the Ge QD, leading to the movement of Ge QD. Accordingly, the size, morphology, and spatial distribution of the Ge QDs are significantly influenced by the oxidation conditions and the underlying silicon-containing layers. Temperature- and power-dependent photoluminescence (PL) analysis suggested that the PL emission on the visible wavelength of Ge QDs embedded in SiO2/Si3N4 matrices is a consequence of exciton recombination of Ge QDs thanks to combined effects of strain and quantum confinement.
Based on this approach, this thesis further proposes a simple and controllable growth method for placing dense 3D Ge QD arrays in a uniform or a graded distribution by thermally oxidizing stacked poly-SiGe/Si3N4 in a layer-cake technique. Moreover, Ge-QD metal-oxide-semiconductor (MOS) photodetectors were fabricated and featured low dark current density (1.5×10-3 mA/cm2), superior photo-current-to-dark-current ratio (13 500), high photoresponsivity (2.2 A/W), and fast response time (5 ns), showing a great promise for direct integration with prevailing Si complementary metal-oxide-semiconductor (CMOS) electronic circuits. It is also worth to point out that the photo-current-to-dark-current ratio exhibits a strong dependence on the volume of Ge QD in the gate dielectrics and effective gate dielectric thickness.
[1] M. Yamamoto, M. Kubo, and K. Nakao, “Si-OEIC with a built-in pin-photodiode,” IEEE Trans. Electron Devices, 42, 58 (1995).
[2] K. Misiakos, E. Tsoi, E. Halmagean, and S. Kakabakos, “Monolithic integration of light emitting diodes, detectors and optical fiber on a silicon wafers: a CMOS compatible optical sensor,” Tech. Dig. Int. Electron Devices Meets., 25 (1998).
[3] H. Zimmermann, and T. Heide, “A monolithically integrated 1-Gb/s optical receiver in 1-μm CMOS technology,” IEEE Photon. Technol. Lett., 13, 711 (2001).
[4] E. D. Palik, Handbook of Optical Constants of Solids: Academic Press (1998).
[5] R. P. Feynman, “There’s plenty of room at the bottom,” Eng. Sci., 23, 22 (1960).
[6] D. Bimber, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures: Wiley (1999).
[7] M. F. Li, Modern Semiconductor Quantum Physics: World Science (1994).
[8] B. Delley, and E. F. Steigmeier, “Quantum confinement in Si nanocrystals,” Phys. Rev. B, 47, 1397 (1993).
[9] T. Takagahara, and K. Takeda, “Theory of the quantum confinement effect on excitons of indirect-gap materials,” Phys. Rev. B, 46, 15578 (1992).
[10] Y. Maeda, N. Tsukamoto, and Y. Yazawa, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett., 59, 3168 (1991).
[11] M. Nogami, and Y. Abe, “Sol-gel synthesis of Ge nanocrystals-doped glass and its photoluminescence,” J. Sol. Gel. Sci. Tehnol., 9, 139 (1997).
[12] I. Stavarache, A. M. Lepadatu, N. G. Gheorghe, R. M. Costescu, G. E. Stan, D. Marcov, A. Slav, G. Iordache, T. F. Stoica, V. Iancu, V. S. Teodorescu, C. M. Teodorescu, and M. L. Ciurea, “Structural investigations of Ge nanoparticles embedded in an amorphous SiO2 matrix,” J. Nanopart. Res., 13, 221 (2011).
[13] H. Yang, X. Wang, H. Shi, S. Xie, F. Wang, X. Gu, and X. Yao, “Photoluminescence of Ge nanoparticles embedded in SiO2 glasses fabricated by a sol-gel method,” Appl. Phys. Lett., 81, 5144 (2002).
[14] J. G. Zhu, C. W. White, J. D. Budai, S. P. Withrow, and Y. Chen, “Growth of Ge, Si, and SiGe nanocrystals in SiO2 matrices,” J. Appl. Phys., 78, 4386 (1995).
[15] J. V. Borany, R. Grötzschel, K. H. Heinig, A. Markwitz, W. Matz, B. Schmidt, and W. Skorupa, “Multimodal impurity redistribution and nanocluster formation in Ge implanted silicon dioxide films,” Appl. Phys. Lett., 71, 3215 (1997).
[16] S. Mirabella, S. Cosentino, A. Gentile, G. Nicotra, N. Piluso, L. V. Mercaldo, F. Simone, C. Spinella, and A. Terrasi, “Matrix role in Ge nanoclusters embedded in Si3N4 or SiO2,” Appl. Phys. Lett., 101, 011911 (2012).
[17] S. Cosentino, S. Mirabella, M. Miritello, G. Nicotra, R. L. Svio, F. Simone, C. Spinella, and A. Terrasi, “The role of the surfaces in the photon absorption in Ge nanoclusters embedded in silica,” Nanoscale Res. Lett., 6, 135 (2011).
[18] I. Stavarche, A. M. Lepadatu, T. Stoica, and M. L. Ciurea, “Annealing temperature effect on structure and electrical properties of films formed of Ge nanoparticles in SiO2,” Appl. Surf. Sci., 285, 175 (2013).
[19] Y. Kanemitsu, H. Uto, Y. Masumoto, and Y. Maeda, “On the origin of visible photoluminescence in nanometer-size Ge crystallites,” Appl. Phys. Lett., 61, 2187 (1992).
[20] P. K. Giri, S. Bhattacharyya, S. Kumari, K. Das, S. K. Ray, B. K. Panigrahi, and K. G. M. Nair, “Ultraviolet and blue photoluminescence from sputter deposited Ge nanocrystals embedded in SiO2 matrix,” J. Appl. Phys., 103, 103534 (2008).
[21] P. W. Li, W. M. Liao, S. W. Li, P. S. Chen, S. C. Lu, and M. J. Tsai, “Formation of atomic-scale germanium quantum dots by selective oxidation of SiGe/Si-on-insulator,” Appl. Phys. Lett., 83, 4628 (2003).
[22] W. T. Lai and P. W. Li, “Growth kinetics and related physical/electrical properties of Ge quantum dots formed by thermal oxidation of Si1-xGex-on-insulator,” Nanotechnology, 18, 145402 (2007).
[23] S. S. Tzeng and P. W. Li, “Enhanced 400600 nm photoresponsivity of metal-oxide-semiconductor diodes with multi-stack germanium quantum dots,” Nanotechnology, 19, 235203 (2008).
[24] K. H. Chen, C. Y. Chien, and P. W. Li, “Precise Ge quantum dot placement for quantum tunneling devices,” Nanotechnology, 21, 055302 (2010).
[25] C. Y. Chien, Y. J. Chang, J. E. Chang, M. S. Lee, W. Y. Chen, T. M. Hsu, and P. W. Li, “Formation of Ge quantum dots array in layer-cake technique for advanced photovoltaics,” Nanotechnology, 21, 505201 (2010).
[26] C. Y. Chien, Y. J. Chang, K. H. Chen, W. T. Lai, T. George, A. Scherer, and P. W. Li, “Nanoscale, catalytically enhanced local oxidation of silicon-containing layers by ‘burrowing’ Ge quantum dots,” Nanotechnology, 22, 435602 (2011).
[27] J. E. Chang, P. H. Liao, C. Y. Chien, J. C. Hsu, M. T. Hung, H. T. Chang, S. W. Lee, W. Y. Chen, T. M. Hsu, T. George, and P. W. Li, “Matrix and quantum confinement effects on optical and thermal properties of Ge quantum dots,” J. Phys. D, 45, 105303 (2012).
[28] G. H. Shih, C. G. Allen, and B. G. Potter, “Interfacial effects on the optical behavior of Ge: ITO and Ge: ZnO nanocomposite films,” Nanotechnology, 23, 075203 (2012).
[29] S. G. Park, W. S. Liu, and M. A. Nicolet, “Kinetics and mechanism of wet oxidation of GexSi1-x alloys,” J. Appl. Phys., 75, 1764 (1994).
[30] K. F. LeGoues, R. Rosenberg, T. Nguyen, F. Himpsel, and B. S. Meyerson, “Oxidation studies of SiGe,” J. Appl. Phys., 65, 1724 (1989).
[31] H. K. Liou, P. Mei, U. Gennser, and E. S. Yang, “Effects of Ge concentration on SiGe oxidation behavior,” Appl. Phys. Lett., 59, 1200 (1991).
[32] D. C. Paine, C. Caragianis, and A. F. Schwartzman, “Oxidation of Si1-xGex alloys at atmospheric and elevated pressure,” J. Appl. Phys., 70, 5076 (1991).
[33] H. Tsutsu, W. J. Edwards, D. G. Ast, and T. I. Kamins “Oxidation of polycrystalline-SiGe alloys,” Appl. Phys. Lett., 64, 297 (1994).
[34] P. E. Hellberg, S. L. Zhang, F. M. d’Heurle, and C. S. Petersson, “Oxidation of silicon-germanium allys. II. A mathematical model,” J. Appl. Phys., 82, 5779 (1997).
[35] N. Sugiyama, T. Tezuka, T. Mizuno, M. Suzuki, Y. Ishikawa, N. Shibata, and S. Takagi, “Temperature effects on Ge condensation by thermal oxidation of SiGe-on-insulator structures,” J. Appl. Phys., 95, 4007 (2004).
[36] I. Barin and O. Knacke, Thermochemical Properties of Inorganic Substances: Springer (1977).
[37] M. Ogino, Y. Onabe, and M. Watanabe, “The diffusion coefficient of germanium in silicon,” Status Solidi A, 72, 535 (1982).
[38] F. J. Norton, “Permeation of gaseous oxygen through vitreous silica,” Nature, 191, 701 (1961).
[39] B. D. Cullity and S. R. Stock, Elements of x-ray diffraction: Pearson (2001).
[40] J. I. Langgord, and A. J. C. Wilson, “Scherrer after sixty years: a survey and some new results in the determination of crystallite size,” J. Appl. Crystallogr., 11, 102 (1978).
[41] Y. Saito, “Crystal structure and habit of silicon and germanium particles growth in argon gas,” J. Crystal Growth, 47, 61 (1979).
[42] F. X. Zhang and W. K. Wang, “Crystal structure of germanium quenched from the melt under high pressure,” Phys. Rev. B, 52, 3113 (1995).
[43] S. Sato, S. Nozaki, and H. Morisaki, “Density of states of the tetragonal-phase germanium nanocrystals using x-ray photoelectron spectroscopy,” Appl. Phys. Lett., 72, 2460 (1998)
[44] J. D. Joannopoulos and M. L. Cohen, “Electronic properties of complex crystalline and amorphous phase of Ge and Si. I. Density of states and band structures,” Phys. Rev. B, 7, 2644 (1973).
[45] http://kinetics.nist.gov/janaf/
[46] J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI technology: Prentic-Hall (2000).
[47] D. Fathy, O. W. Holland, and C. W. White, “Formation of epitaxial layers of Ge on Si substrates by Ge implantation and oxidation,” Appl. Phys. Lett., 51, 1337 (1987).
[48] B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys., 36, 3770 (1965).
[49] W. S. Liu, E. W. Lee, M. A. Nicolet, V. Arbet-Engels, K. L. Wang, N. M. Abuhadba, and C. R. Aita, “Wet oxidation of GeSi at 700 oC,” J. Appl. Phys., 71, 4015 (1992).
[50] J. Drowart, G. D. Maria, and M. G. Inghram, “Thermodynamic study of SiC utilizing a mass spectrometer,” J. Chem. Phys., 29, 1015 (1958).
[51] J. Drowart, and R. E. Honig, “A mass spectrometer method for the determination of dissociation energies of diatomic molecules,” J. Phys. Chem., 61, 980 (1957).
[52] D. R. Lide, CRC Handbook of Chemistry and Physics: Chemical Rubber Co. (2001).
[53] K. H. Chen, C. C. Wang, T. George, and P. W. Li, “The role of Si interstitials in the migration and growth of Ge nanocrystallites under thermal annealing in an oxidizing ambient,” Nanoscale Research Lett., 9, 339 (2014).
[54] W. A. Harrison, and E. A. Kraut, “Energies of substitution and solution in semiconductors,” Phys. Rev. B, 37, 8244 (1988).
[55] D. V. Schroeder, An Introduction to Thermal Physics: Addison-Wesley (2000).
[56] H. H. Silvestri, H. Bracht, J. L. Hansen, A. N. Larsen, and E. E. Haller, “Diffusion of silicon in crystalline germanium,” Semicond. Sci. Technol., 21, 758 (2006).
[57] A. A. Stekolnikov, and F. Bechstedt, “Shape of free and constrained group-IV crystallites: Influence of surface energies,” Phys. Rev. B, 72, 125326 (2005).
[58] K. H. Chen, C. C. Wang, T. George, and P. W. Li, “The pivotal role of SiO formation in the migration and Ostwald ripening of Ge quantum dots,” Appl. Phys. Lett., 105, 122102 (2014).
[59] C. E. Bottani, C. Mantini, P. Mailani, M. Manfredini, A. Stella, P. Tognini, P. Cheyssac, and R. Kofman, “Raman, optical-absorption, and transmission electron microscopy study of size effects in germanium quantum dots,” Appl. Phys. Lett., 69, 2409 (1996).
[60] J. Groenen, R. Carles, S. Christiansen, M. Albrecht, W. Dorsch, H. P. Strunk, H. Wawra, and G. Wagner, “Phonons as probes in self-organized SiGe islands,” Appl. Phys. Lett., 71, 3856 (1997).
[61] T. H. Loh, H. S. Nguyen, C. H. Tung, A. D. Trigg, G. Q. Lo, N. Balasubramanian, D. L. Kwong, and S. Tripathy, “Ultrathin low temperature SiGe buffer for growth of high quality Ge epilayer on Si(100) by ultrahigh vacuum chemical vapor deposition,” Appl. Phys. Lett., 90, 092108 (2007).
[62] J. H. Lin, H. B. Yang, J. Qin, B. Zhang, Y. L. Fan, X. J. Yang, and Z. M. Jiang, “Strain analysis of Ge/Si(001) islands after initial Si capping by Raman spectroscopy,” J. Appl. Phys., 101, 083528 (2007).
[63] P. H. Liao, T. C. Hsu, K. H. Chen, T. H. Chen, T. M. Hsu, C. C. Wang, T. George, and P. W. Li, “ Size-tunable strain engineering in Ge nanocrystals embedded within SiO2 and Si3N4,” Appl. Phys. Lett., 105, 172106 (2014).
[64] S. M. Sze, Physics of semiconductor devices: Wiley-Interscience (1985).
[65] M. Fujii, S. Hayashi, and K. Yamamoto, “Raman scattering from quantum dots of Ge embedded in SiO2 thin films,” Appl. Phys. Lett., 57, 2692 (1990).
[66] Y. Kanemitsu, H. Uto, Y. Masumoto, and Y. Maeda, “On the origin of visible photoluminescence in nanometer-size Ge crystallites,” Appl. Phys. Lett., 61, 2187 (1992).
[67] D. C. Paine, C. Caragianis, T. Y. Kim, and Y. Shigesato, “Visible photoluminescence from nanocrystalline Ge formed by H2 reduction of Si0.6Ge0.4O2,” Appl. Phys. Lett., 62, 2842 (1993).
[68] Y. Maeda, “Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: Evidence in support of the quantum-confinement mechanism,” Phys. Rev. B, 51, 1658 (1995).
[69] S. Okamoto, and Y. Kanemitsu, “Photoluminescence properties of surface-oxidized Ge nanocrystals: Surface localization of excitons,” Phys. Rev. B, 54, 16421 (1996).
[70] K. S. Min, K. V. Shcheglov, C. M. Yang, A. Atwater, M. L. Brongersma, and A. Polman, “The role of quantum-confined excitons vs defects in the visible luminescence of SiO2 films containing Ge nanocrystals,” Appl. Phys. Lett., 68, 2511 (1996).
[71] M. Zacharias and P. M. Fauchet, “Blue luminescence in films containing Ge and GeO2 nanocrystals: The role of defects,” Appl. Phys. Lett., 71, 380 (1997).
[72] S. Takeoka, M. Fujii, S. Hayashi, and K. Yamaoto, “Size-dependent near-infrared photoluminescence from Ge nanocrystals embedded in SiO2 matrices,” Phys. Rev. B, 58, 7291 (1998).
[73] E. G. Barbagiovanni, D. J. Lockwood, P. J. Simpson, and L. V. Goncharova, “Quantum confinement in Si and Ge nanostructures,” J. Appl. Phys., 111, 034307 (2012).
[74] C. Bostedt, T. van Buuren, T. M. Willey, N. Franco, L. J. Terminello, C. Heske, and T. Möller, “Strong quantum-confinement effects in the conduction band of germanium nanocrystals,” Appl. Phys. Lett., 84, 4056 (2004).
[75] A. Tsolakidis and R. M. Martin, “Comparison of the optical response of hydrogen-passivated germanium and silicon clusters,” Phys. Rev. B, 71, 125319 (2005).
[76] Y. M. Niquet, G. Allan, C. Delerue, and M. Lannoo, “Quantum confinement in germanium nanocrystals,” Appl. Phys. Lett., 77, 1182 (2000).
[77] G. Dresselhaus, A. F. Kip, and C. Kittel, “Cyclotron resonance of electrons and holes in silicon and germanium crystals,” Phys. Lett., 98, 368 (1955).
[78] M. Palummo, G. Onida, and R. D. Sole, “Optical properties of germanium nanocrystals,” Phys. Status Solidi A, 175, 23 (1999).
[79] T. Schmidt and K. Lischka, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B, 45, 8989 (1992).
[80] S. Jin, Y. Zheng, and A. Li, “Characterization of photoluminescence intensity and efficiency of free excitons in semiconductor quantum well structures,” J. Appl. Phys., 82, 3870 (1997).
[81] P. D. Nguyen, D. M. Kepaptsoglou, R. Erni, Q. M. Ramasse, and A. Olsen, “Quantum confinement of volume plasmons and interband transitions in germanium nanocrystals,” Phys. Rev. B, 86, 245316 (2012).
[82] M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett., 82, 197 (1999).
[83] J. Wan, G. L. Jin, Z. M. Jiang, Y. H. Luo, J. L. Liu, and K. L. Wang, “Band alignments and photon-induced carrier transfer from wetting layers to Ge islands grown on Si(001),” Appl. Phys. Lett., 78, 1763 (2001).
[84] X. Sun, J. F. Liu, L. C. Kimerling, and J. Michel, “Toward a germanium laser for integrated silicon photonics,” IEEE J. Sel. Top. Quantum Electron., 16, 124 (2010).
[85] B. Dutt, D. S. Sukhdeo, D. Nam, B. M. Vulovic, Z. Yuan, and K. C. Sarawat, “Roadmap to an efficient germanium-on-silicon laser: strain vs. n-type doping,” IEEE Photon. J., 4, 2002 (2012).
[86] J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express, 15, 11272 (2007).
[87] J. Liu, X. Sun, R. C. Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si operating at room temperature,” Opt. Lett., 35, 679 (2010)..
[88] J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. K. Danielson, J. Michel, and L. C. Kimerling, “ Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett., 87, 011110 (2005).
[89] Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett., 82, 2044 (2003).
[90] H. Ohta, T. Watanabe, and I. Ohdomari, “Strain distribution around SiO2/Si interface in Si nanowires: a molecular dynamics study,” Jpn. J. Appl. Phys., 46, 3227 (2007).
[91] J. Liu, J. Michel, W. Giziewicz, D. Pan, K. Wada, D. D. Cannon, S. Jongthammanurak, D. T. Danielson, and L. C. Kimerling, “High-performance, tensile-strained Ge p-i-n photodetectors on a Si platform,” Appl. Phys. Lett., 87, 103501 (2005).
[92] M. Lee, E. A. Fitzgerald, M. T. Bulsara, M. T. Currie, and A. Lochtefeld, “Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors,” J. Appl. Phys., 97, 011101 (2005).
[93] N. Mohta, and S. E. Thompson, “Mobility enhancement: the next vector to extend Moore’s law,” IEEE Circuits Devices Mag., 21, 18 (2005).
[94] C. Uhristian, J. Chevallier, A. N. Larsen, and B. Bech, “Near-infrared-ultraviolet absorption cross sections for Ge nanocrystals in SiO2 thin films: effects of shape and layer structure,” J. Appl. Phys., 109, 094314 (2011).
[95] S. Mirabella, S. Cosentino, M. Failla, M. Miritello, G. Nicotra, F. Simone, C. Spinella, G. Franzò, and A. Terrasi, “Light absorption enhancement in closely packed Ge quantum dots,” Appl. Phys. Lett., 102, 193105 (2013).
[96] M. Takagi, “Electron-diffraction study of liquid-solid transition of thin metal films,” J. Phys. Soc. Jpn., 9, 959 (1954).
[97] Q. Xu, I. D. Sharp, C. W. Yuan, D. O. Yi, C. Y. Liao, A. M. Glaeser, A. M. Minor, J. W. Beeman, M. C. Ridway, P. Kluth, J. W. Ager III, D. C. Chrzan, and E. E. Haller, “Large melting-point hysteresis of Ge nanocrystals embedded in SiO2,” Phys. Rev. Lett., 97, 155701 (2006).
[98] A. N. Goldstein, C. M. Echer, A. P. Alivistos, “Melting in semiconductor nanocrystals,” Science, 26, 1425 (1992).
[99] C. W. Liu, W. T. Liu, M. H. Lee, and B. C. Hsu, “A novel photodetector using MOS tunneling structures,” IEEE Electron Device Lett., 21, 307 (2000).
[100] J. M. Shieh, W. C. Yu, J. Y. Huang, C. K. Wang, B. T. Dai, H. Y. Jhan, C. W. Hsu, H. C. Kuo, F. L. Yang, and C. L. Pan, “Near-infrared silicon quantum dots metal-oxide-semiconductor field-effect transistor photodetector,” Appl. Phys. Lett., 94, 241108 (2009).
[101] S. K. Kim, B. H. Kim, C. H. Cho, and S. J. Park, “Size-dependent photocurrent of photodetectors with silicon nanocrystals,” Appl. Phys. Lett., 94, 183106 (2009).
[102] S. K. Ray, S. Das, R. K. Singha, S. Manna, and A. Dhar, “Structural and optical properties of germanium nanostructures on Si(100) and embedded in high-k oxides,” Nanoscale Res. Lett., 6, 224 (2011).
[103] L. Vescan, T. Stoica, and E. Sutter, “Growth and properties of SiGe structures obtained by selective epitaxy on finite areas,” Appl. Phys. A., 87, 485 (2007).
[104] A. M. Lepadatu, T. Stoica, I. Stavarache, V. S. Teodorescu, D. Buca, and M. L. Ciurea, “Dense Ge nanocrystal layers embedded in oxide obtained by controlling the diffusion-crystallization process,” J. Nanopart. Res., 15, 1981 (2013).
[105] S. Cosentino, S. Mirabella, P. Liu, S. T. Le, M. Miritello, S. Lee, I. Crupi, G. Nicotra, C. Spinella, D. Paine, A. Terrasi, A. Zaslavsky, D. Pacifici, “Role of Ge nanoclusters in the performance of photodetectors compatible with Si technology,” Thin Solid Films, 548, 551 (2013).
[106] S. Cosentino, E. S. Ozen, R. Raciti, A. M. Mio, G. Nicotra, F. Simone, I. Crupi, R. Turan, A. Terrasi, A. Aydinli, and S. Mirabella, “Light harvesting with Ge quantum dots embedded in SiO2 or Si3N4,” J. Appl. Phys., 115, 043103 (2014).
[107] J. Y. Zhang, Y. H. Ye, and X. L. Tan, “Electroluminescence and carrier transport of SiO2 film containing different density of Ge nanocrystals,” Appl. Phys. Lett., 74, 2459 (1999).
[108] B. C. Hsu, S. T. Chang, T. C. Chen, P. S. Kuo, P. S. Chen, Z. Pei, and C. W. Liu, “A high efficient 820 nm MOS Ge quantum dot photodetector,” IEEE Electron Device Lett., 24, 318 (2003).
[109] J. M. Shieh, Y. F. Lai, and W. X. Ni, “Enhanced photoresponse of a metal-oxide-semiconductor photodetector with silicon nanocrystals embedded in the oxide layer,” Appl. Phys. Lett., 90, 051105 (2007).
[110] S. Cosentino, P. Liu, S. T. Le, S. Lee, D. Paine, A. Zaslavsky, D. Pacifici, S. Mirabella, M. Miritello, I. Crupi, and A. Terrasi, “High-efficiency silicon-compatible photodetectors based on Ge quantum dots,” Appl. Phys. Lett., 98, 221107 (2011).
[111] P. Liu, S. Cosentino, S. T. Le, S. Lee, D. Paine, A. Zaslavsky, D. Pacifici, S. Mirabella, M. Miritello, I. Crupi, and A. Terrasi, “Transient photoresponse and incident power dependence of high-efficiency germanium quantum dot photodetectors,” J. Appl. Phys., 112, 083103 (2012).
[112] J. Liu, J. Michel, W. Giziewicz, D. Pan, K. Wada, D. D. Cannon, S. Jongthammanurak, D. T. Danielson, and L. C. Kimerling, “High-performance, tensile-strained Ge p-i-n photodetectors on a Si platform,” Appl. Phys. Lett., 87, 103501 (2005).
[113] Z. Huang, N. Kong, X. Guo, M. Liu, N. Duan, A. L. Beck, S. K. Banerjee, and J. C. Campbell, “21-GHz-Bandwidth germanium-on-silicon photodiode using thin SiGe buffer layer,” IEEE J. Sel. Top. Quant. Electron., 12, 1450 (2006).
[114] S. B. Samavedam, M. T. Currie, T. A. Langdo, and E. A. Fitzgerald, “High-quality germanium photodiodes integrated on silicon substrates using optimized relaxed graded buffers,” Appl. Phys. Lett., 73, 2125 (1998).
[115] Z. Huang, J. Oh, and J. C. Campbell, “Back-side-illuminated high-speed Ge photodetector fabricated on Si substrate using thin SiGe buffer layers,” Appl. Phys. Lett., 85, 3286 (2004).
[116] C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible germanium waveguide photodiode with low dark current,” Opt. Exp., 19, 24897 (2011).
[117] R. F. Pierret, Field Effect Devices: Addison-Wesley (1990).
[118] S. K. Zhang, W. B. Wang, I. Shtau, F. Yun, L. He, H. Morkoc, X. Zhou, M. Tamargo, and R. R. Alfano, “Backilluminated GaN/AlGaN heterojunction ultraviolet photodetector with high internal gain,” Appl. Phys. Lett., 81, 4862 (2002).
[119] W. T. Lai, P. H. Liao, A. P. Homyk, A. Scherer, and P. W. Li, “SiGe quantum dots over Si pillars for visible to near-infrared broadband photodetection,” IEEE Photon. Technol. Lett., 25, 1520 (2013).
[120] M. H. Kuo, C. C. Wang, W. T. Lai, T. George, and P. W. Li, “Designer Ge quantum dots on Si: A heterostructure configuration with enhanced optoelectronic performance,” Appl. Phys. Lett., 101, 223107 (2012).
[121] C. Y. Chien, W. T. Lai, Y. J. Chang, C. C. Wang, M. H. Kuo, and P. W. Li, “Size tunable Ge quantum dots for near-ultraviolet to near-infrared photosensing with high figures of merit,” Nanoscale, 6, 5303 (2014).
[122] I. H. Chen, K. H. Chen, W. T. Lai, and P. W. Li, “ Single germanium quantum-dot placement along with self-aligned electrodes for effective management of single charge tunneling,” IEEE Trans. Electron Devices, 59, 3224 (2012).
[123] I. H. Chen, W. T. Lai, and P. W. Li, “Realization of solid-state nanothermometer using Ge quantum-dot single-hole transistor in few-hole regime,” Appl. Phys. Lett., 104, 243506 (2014).
[124] T. Osada, Th. Kugler, P. Bröms, and W. R. Salaneck, “Polymer-based light-emitting devices: investigations on the role of the indium-tin oxide (ITO) electrode,” Synthetic Metals, 96, 77 (1998).
[125] K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki, “Dependence of indium-tin-oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies,” J. Appl. Phys., 87, 295 (2000).
[126] F. Nüesch, L. J. Rothberg, E. W. Forsythe, Q. T. Le, and Y. Gao, “A photoelectron spectroscopy study on the indium tin oxide treatment by acids and bases,” Appl. Phys. Lett., 74, 880 (1999).
[127] A. Sharam, P. J. Hotchkiss, S. R. Marder, and B. Kippelen, “Tailoring the work function of indium tin oxide electrodes in electrophosphorescent organic light-emitting diodes,” J. Appl. Phys., 105, 084507 (2009).
[128] D. Ahn, C. Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, and J. Michel, “High performance, waveguide integrated Ge photodetectors,” Opt. Express, 15, 3916 (2007).
[129] J. Liu, R. C. Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films, 520, 3354 (2012).