跳到主要內容

簡易檢索 / 詳目顯示

研究生: Venkatesan
Govindan
論文名稱: 柯維丹
Venkatesan Govindan
指導教授: Chun-Guey Wu
Chun-Guey Wu
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 169
中文關鍵詞: Organic moleculesHole transporting materialsElectronic transporting materialsPerovskite solar cells
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本篇論文研究合成有機小分子應用在反式有機太陽能電池中作為
    donor,在反式鈣鈦礦太陽能電池中作為電洞傳遞層材料,以及在一般式鈣
    鈦礦太陽能電池中作為電子傳遞層材料,並探討這些材料分子的物化性質、
    結構與材料性質的關係及材料組裝成元件後的光伏表現。
    第一部分研究以diketopyrrolopyrrole (DPP) 作為acceptor ,
    ethylenedioxythiophene (EDOT) 、triphenylamine (TPA) 、alkyl thiophene
    (AT) 作為donor , 利用direct alkylation 合成donor–donor–acceptor–donor–
    donor (D1–D2–A–D2–D1)類型的四個小分子(SM1, SM2, SM3, SM4),以及
    利用Stille coupling合成acceptor–donor–acceptor (A–D–A)類型的兩個小分子
    (SM5, SM6),作為donor應用在反式有機太陽能電池中(PCBM為acceptor,
    ZnO為電子傳遞層,MoO3為電洞傳遞層),因SM2有最低的HOMO能階,
    因此以SM2作為donor所組裝之元件有最高的VOC值,為0.82V。SM5和SM6
    為結構異構物,但由於SM6和SM5相比有較好的溶解度和較低的HOMO能
    階,因此以SM6所組裝的元件有較好的光電轉換效率。第二部份研究合成雜環 spiro-typed 的分子做為電洞傳遞層材料,分
    別以spiro[fluorene-9,9’-xanthene] (SFX) 和spiro[fluorene-9,9’-thioxanthene]
    (SFT)為結構核心合成產率高成本低的SFX-TPAM、SFX-TPA、SFT-TPAM、
    SFT-TPA等四個化合物。以這四個小分子作為電洞傳遞層(HTL)應用在元
    件中,元件架構為glass/ITO/HTL/CH3NH3PbI3/ C60/BCP/Ag。其中以SFXTPAM
    作為HTL , 在不添加dopant 的條件下所組裝的元件和以spiro-
    OMeTAD作為電洞傳遞層所組裝的元件相比,有較好的光電轉換效率,為
    10.23% 。第三部份的研究則包含三個以fullerene (C60及C70)為結構核心,bis(2-
    (2-((tert-butoxycarbonyl)amino)ethoxy)ethyl) malonate (4b)作為取代基,合成
    三個電子傳遞層修飾材料(C60-RT2、C60-RT6及C70-RT2)應用在一般式鈣鈦
    礦太陽能電池元件中。這三個材料對極性質子溶劑(甲醇、乙醇及水)有很
    好的溶解度,在一般式太陽能電池元件的製程中,混在TiO2漿料中使用,
    可以製作低溫TiO2。以TiO2+C60-RT2、TiO2+C60-RT6、TiO2+C70-RT6作為
    電子傳遞層所組裝之元件光電轉換效率分別為16.37%、18.03%及17.10%,
    較以TiO2作為電子傳遞層所組裝之元件效率(14.92%)來得高。


    Abstract
    This thesis is the work on the organic semiconductors for applications as
    electron donor (p-type) materials in organic solar cells (OSCs), hole transporting
    materials (HTMs) in inverted perovskite solar cells (p-i-n PSCs) and electron
    transporting materials (ETMs) in regular perovskite solar cells (n-i-p PSCs). The
    synthesis and physicochemical characterization of new materials (P-type, HTMs
    and ETMs) were reported. The structure-property relationship and the
    photovoltaic performance of the corresponding cells were investigated.
    The first part focuses on synthesis of four donor–donor–acceptor–donor–
    donor (D1–D2–A–D2–D1) type small molecules (SM1, SM2, SM3 and SM4),
    in which diketopyrrolopyrrole (DPP) was used as an acceptor (DPP) core and
    3,4-ethylenedioxythiophene (EDOT), triphenylamine (TPA) or alkyl thiophene
    (AT) acted as a donor using direct arylation reaction. The inverted small
    molecule solar cell (using PCBM as an acceptor, and ZnO and MoO3 as the
    electron and hole transporters, respectively) based on SM2 has the highest value
    of Voc (0.82 V) due to SM2 having the lowest HOMO level. Two acceptor–
    donor–acceptor type (A–D–A) molecules (SM5 and SM6) were also synthesized
    by Stille coupling, in which DPP and EDOT were used as the acceptor and
    donor, respectively. SM5 and SM6 are structural isomers, however the inverted
    cell based on SM6 has a much higher PCE than that based on SM5, due to SM6
    having better solubility and a lower HOMO energy level.
    The second part targets on four heterocyclic spiro-typed hole transporting
    materials (HTMs) carrying spiro[fluorene-9,9’-xanthene] (SFX) such as SFXTPAM
    and SFX-TPA or spiro[fluorene-9,9’-thioxanthene] (SFT) unit such as
    SFT-TPAM and SFT-TPA were synthesized through low cost facile route with
    high yields. The photovoltaic performance of the inverted PSCs based on these
    small molecular hole transporting materials with the device architecture of
    glass/ITO/HTM/CH3NH3PbI3/C60/BCP/Ag was studied. Inverted PSC based on
    dopant-free SFX-TPAM HTM achieves a power conversion efficiency of10.23% under the illumination of standard one Sun lighting, which is better than
    that (8.17%) of the cell based on dopant-free spiro-OMeTAD.
    The third part is the preparation and photovoltaic application of three
    fullerene based ETMs (C60-RT2, C60-RT6 and C70-RT2), in which fullerene (C60
    and C70) as core unit and bis(2-(2-((tert-butoxycarbonyl)amino)ethoxy)ethyl)
    malonate (4b) was used as a substituent. All three fullerene exhibit very good
    solubility in polar protic solvents (such as methanol, ethanol and water), which
    is beneficial for making of low temperature processed ETMs for regular PSCs.
    The new fullerene derivatives were mixed with low temperature processed TiO2
    to be used as ETMs in regular PSCs (FTO/ETMs/PSK/Spiro-
    OMeTAD/MoO3/Ag). Cells based on new ETMs have the PCE of 16.37%
    (TiO2+C60-RT2), 18.03% (TiO2+C60-RT6) and 17.10% (TiO2+C60-RT6), which
    is higher than that (14.92%) of the cell based on TiO2 ETL. The work of this
    thesis provides valuable guideline for designing charge transporting materials
    for photovoltaic application.

    Chinese Abstract i English Abstract iii Acknowledgements v Table of the contents .vi List of Figures .ix List of Tables.xii List of Schemes .xiii Explanation of symbols .xiv Chapter one: Introduction .1 1-1 Background 1 1-2 Photovoltaics 1 1-3 Organic solar cells (OSCs) .3 1-3-1 Device architecture .3 1-3-2 Working mechanism of OSCs.5 1-3-3 Photovoltaic characteristics.7 1-3-4 High performance donor small molecule .8 1-3-5 Acceptor materials 10 1-3-6 Diketopyrrolo[3,4-c]pyrrolopyrrole (DPP) based donor materials for OSCs. 11 1-4 Perovskite solar cells (PSCs)15 1-4-1 Device architecture and working mechanism of perovskite solar cells 16 1-4-2 Hole transporting materials for inverted PSCs19 1-4-3 Spiro-type hole transporting materials for inverted PSCs.19 1-4-4 Electron transporting materials .22 1-4-5 Fullerene based electron transporting materials for regular PSCs 22 1-5 Objective of this thesis34 Chapter Two: Facile synthesis of low band-gap DPP–EDOT containing small molecules for solar cell applications.38 2-1 Synthesis and characterizations of the small molecule SM1-SM6.38 2-2 Optical properties44 2-3 Electrochemical properties. 47 2-4 Small molecules in inverted heterojunction device .50 2-5 Conclusion 53 2-6 Experimental section 54 2-6-1 Synthesis of DPP based small molecule (SM1-SM6).54 2-6-2 Physicochemical studies69 2-6-3 Device fabrication and characterization70 Chapter Three: Heterocyclic spiro-type hole transporting materials for perovskite solar cell applications73 3-1 Synthesis and characterization of HTMs .73 3-2 Optical properties75 3-3 Electrochemical properties. 79 3-4 Photovoltaic performance.82 3-5 Conclusion 87 3-6 Experimental section 88 3-6-1 Synthesis of Spiro-type hole transporting materials (SFX-TPAM, SFX-TPA, SFT-TPAM and SFT-TPA).88 3-6-2 Physicochemical studies 96 3-6-3 Device fabrication and characterization 98 Chapter Four: Synthesis of fullerene based electron transporting materials for perovskite solar cell applications .100 4-1 Synthesis and characterization of Fullerene ETMs 100 4-2 Optical properties 105 4-3 Electrochemical properties .106 4-4 Photovoltaic performance.109 4-5 Conclusion 118 4-6 Experimental section 119 4-6-1 Synthesis of fullerene based electron transporting materials(C60-RT1, C60-RT2, C60-RT6 and C70-RT2).119 4-6-2 Physicochemical studies125 4-6-3 Device fabrication and characterization126 Chapter Five: Conclusions .128 Future Work .130 Reference 133

    Reference
    [1] Epstein, P. R.; Buonocore, J. J.; Eckerle, K.; Hendryx, M.; Stout III, B.
    M.; Heinberg, R.; Clapp, R. W.; May, B.; Reinhart, N. L.; Ahern, M. M.;
    Doshi, S. K.; Glustrom, L. Full cost accounting for the life cycle of coal in
    “Ecological Economics Reviews. Ann. N.Y. Acad. Sci. 2011, 1219, 73-98.
    [2] Jean, J.; Brown, P. R.; Jaffe, R. L.; Buonassisi, T.; Bulovic, V. “Pathways
    for solar photovoltaics”. Energy Environ. Sci. 2015, 8, 1200-1219.
    [3] Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W. Dunlop, E. D.
    Progress in Photovoltaics: Research and Applications 2016, 24, 905-913.
    [4] Boyle. G. Renewable Energy, Power for a sustainable future, 2nd ed.
    Oxford, UK: Oxford University Press, 2004.
    [5] Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D.;
    Progress in Photovoltaics: Research and Applications 2011, 22, 1-9.
    [6] Collier, J; Wu, S.; Apul, D. “Life cycle environmental impacts from
    CZTS (copper zinc tin sulfide) and Zn3P2 (zinc phosphide) thin film PV
    (photovoltaic) cells”. Energy 2014, 74, 314-321.
    [7] Jeon, N. J.; Na, H.; Jung, E. H.; Yang, T.-Y.; Lee, Y. G.; Kim, G.; Shin,
    H.-W.; Seok, S. I.; Lee, J.; Seo, J. “A fluorene-terminated holetransporting
    material for highly efficient and stable perovskite solar
    cells”. Nat. Energy 2018, 3, 682-689.
    [8] Gordon J. H.; Ruseckas, A.; Ifor D.; Samuel, W. “Light harvesting for
    organic photovoltaics”. Chem. Rev. 2017, 117, 796−837.
    [9] Tang, C. W. “Two-layer organic photovoltaic cell”. Appl. Phys. Lett.
    1986, 48, 183−185.
    [10] Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. “Photoinduced
    electron transfer from a conducting polymer to buckminsterfullerene”.
    Science 1992, 258, 1474-1476.
    134
    [11] Kraabel, B.; Lee, C. H.; McBranch, D.; Moses, D.; Sariciftci, N. S.;
    Heeger, A. J. “Ultrafast photoinduced electron transfer in conducting
    polymer/buckminsterfullerene composites”. Chem. Phys. Lett., 1993, 213,
    389-394.
    [12] Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend,
    R. H.; Moratti, S. C.; Holmes, A. B. “Efficient photodiodes from
    interpenetrating polymer networks”. Nature 1995, 376, 498-500.
    [13] Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. “Polymer
    photovoltaic cells: enhanced efficiencies via a network of internal donoracceptor
    heterojunctions”. Science 1995, 270, 1789-1791.
    [14] Sze, S. M.; Ng, K.K. “Physics of Semiconductor Devices”. 3rd ed. Wiley
    Interscience, 2006.
    [15] Gupta, V.; Kyaw, A. K. K.; Wang, D. H.; Chand, S.; Bazan, G.C.;
    Heeger, A. J. “Barium: an efficient cathode layer for bulk-heterojunction
    solar cells”. Sci. Reports 2013, 3. 1965.
    [16] Zhou, J.; Wan, X; Liu, Y.; Zuo, Y.; Li, Z.; He, G. “Small molecules based
    on benzo[1,2-b:4,5-b’]dithiophene unit for high-performance solutionprocessed
    organic solar cells”. J. Am. Chem. Soc., 2012, 134, 16345-51.
    [17] Ni, W.; Li, M.; Wan, X.; Feng, H.; Kan, B.; Zuo, Y. “A high-performance
    photovoltaic small molecule developed by modifying the chemical
    structure and optimizing the morphology of the active layer”. RSC Adv.,
    2014, 4, 31977-31980.
    [18] Kumar, C.V.; Cabau, L.; Koukaras, E. N.; Sharma, G. D.; Palomares, E.
    “Efficient solution processed D1-A-D2-A-D1 small molecules bulk
    heterojunction solar cells based on alkoxy triphenylamine and benzo[1,2-
    b:4,5-b′]thiophene units”. Org. Electron. 2015, 26, 36-47.
    [19] Lin, Y.; Wang, J.; Li, T.; Wu, Y.; Wang, C.; Han, L.; Yao, Y.; Ma, W.;
    Zhan, X. “Efficient fullerene-free organic solar cells based on fused ring
    oligomer molecules”. J. Mater. Chem. A 2016, 4, 1486-1494.
    135
    [20] Song, B.; Forrest, S. R. “Nanoscale control of morphology in fullerenebased
    electron-conducting buffers via organic vapor phase deposition”.
    Nano Lett. 2016, 16, 3905-3910.
    [21] Wang, M.; Hu, X.; Liu, P.; Li, W.; Gong, X.; Huang, F.; Cao, Y. “Donoracceptor
    conjugated polymer based on naphtho[1,2-c:5,6-
    c]bis[1,2,5]thiadiazole for high-performance polymer solar cells”. J. Am.
    Chem. Soc. 2011, 133, 9638−9641.
    [22] Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H,; Ma, W.; Yan, H.
    “Efficient organic solar cells processed from hydrocarbon solvents”. Nat.
    Energy 2016, 1, 15027.
    [23] Anthony, J. E. “Small-molecule, nonfullerene acceptors for polymer bulk
    heterojunction organic photovoltaics”. Chem. Mater. 2011, 23, 583-590.
    [24] Cheqi, Y.; Stephen, B.; Zhaohui, W.; He, Y.; Alex, K. Y.; Jen, S.;
    Marder, R.; Xiaowei, Z. “Non-fullerene acceptors for organic solar
    cells”. Nature Reviews Materials 2018, 3, 18003.
    [25] Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.;
    Kastler, M.; Facchetti, A. “A high-mobility electron-transporting
    polymer for printed transistors”. Nature 2009, 457, 679-686.
    [26] Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao,
    Z.; Ding, L.; Xia, R. “Organic and solution-processed tandem solar cells
    with 17.3% efficiency”. Science 2018, 361, 1094-1098.
    [27] Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.;
    Kastler, M.; Facchetti, A. “A high-mobility electron-transporting
    polymer for printed transistors”. Nature 2009, 457, 679-686.
    [28] Farnum, D. G.; Mehta, G.; Moore, G. G. I.; Siegel, F. P. “Attempted
    reformatskii reaction of benzonitrile, 1,4-diketo-3,6-diphenylpyrrolo[3,4-
    C]pyrrole. A lactam analogue of pentalene”. Tetrahedron Lett. 1974, 29,
    2549-2552.
    136
    [29] Iqbal, A.; Cassar, L. “Process for dyeing high-molecular organic material,
    and novel polycyclic pigments”. U. S. Pat. 1983, 4, 415, 685.
    [30] Rochat, A. C.; Cassar, L.; Iqbal, A. “Novel diketopyrrolopyrrole
    pigments”. EP, 1983, 94911.
    [31] Tamayo, A. B.; Dang, X. D.; Walker, B.; Seo, J.; Kent, T.; Nguyen, T. Q.
    “A low band gap, solution processable oligothiophene with a dialkylated
    diketopyrrolopyrrole chromophore for use in bulk heterojunction solar
    cells”. Appl. Phys. Lett. 2009, 94, 103301.
    [32] Walker, B.; Tamayo, A. B.; Dang, X. D.; Zalar, P.; Seo, J. H.; Garcia, A.;
    Tantiwiwat, M.; Nguyen, T. Q. “Nanoscale phase separation and high
    photovoltaic efficiency in solution‐processed, small‐molecule bulk
    heterojunction solar cells”. Adv. Funct. Mater. 2009, 19, 3063.
    [33] Lee, O. P.; Yiu, A. T.; Beaujuge, P. M.; Woo, C. H.; Holcombe, T. W.;
    Millstone, J. E.; Douglas, J. D.; Chen, M. S.; Fre´chet, J. M. J. “Efficient
    small molecule bulk heterojunction solar cells with high fill factors via
    pyrene‐directed molecular self‐assembly”. Adv. Mater. 2011, 23, 5359.
    [34] Cuesta, V.; Singhal, R.; Cruz, P.; Ganesh, D. S.; Langa, F. “Near-IR
    absorbing D-A-D Zn-porphyrin-based small-molecule donors for organic
    solar cells with low-voltage loss”. ACS App. Mater. Interfaces 2019, 11,
    7216-7225.
    [35] Choi, Y. S.; Jo, W. H. “A strategy to enhance both VOC and JSC of A–D–A
    type small molecules based on diketopyrrolopyrrole for high efficient
    organic solar cells”. Organic Electronics. 2013, 14, 1621-1628.
    [36] Loser, S.; Miyauchi, H.; Hennek, J. W.; Smith, J.; Huang, C.; Facchetti,
    A.; Marks, T. J. “A “zig-zag” naphthodithiophene core for increased
    efficiency in solution-processed small molecule solar cells”. Chem.
    Commun. 2012, 48, 8511-8513.
    [37] Gao, K.; Li, L.; Lai, T.; Xiao, L.; Huang, Y.; Huang, F.; Peng, J.; Cao,
    Y.; Liu, F.; Russell, T. P. “Deep absorbing porphyrin small molecule for
    137
    high-performance organic solar cells with very low energy losses”. J. Am.
    Chem. Soc. 2015, 137, 7282.
    [38] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. “Organometal halide
    perovskites as visible-light sensitizers for photovoltaic cells”. J. Am.
    Chem. Soc. 2009, 131, 6050-6051.
    [39] Wenk, H. R.; Andrei, B. “Minerals: Their Consitiution and Origin”. New
    York: Cambridge University press. 2004, 413, ISBN. 978-0-521-52958-7.
    [40] Liu, S. H.; Wang, L.; Lin, W. C.; Sucharitakul, S.; Burda, C.; Gao, Xuan
    P. A. “Imaging the long transport lengths of photo-generated carriers in
    oriented perovskite films”. Nano Letters 2016, 16, 12, 7925–7929.
    [41] Chin, H. T.; Rusli D.; Eng L. L.; Chi C. Y.; Mohd, A. I.; Norasikin, A. L.;
    Kamaruzzaman, S.; Mohd, M. T. “A review of organic small moleculebased
    holetransporting materials for meso-structured organic–inorganic
    perovskite solar cells”. J. Mater. Chem. A 2016, 4, 15788-15822.
    [42] Mauch, R. H.; Gumlich, H. E.; Wissenschaft, Verlag, E. “Inorganic and
    organic electroluminescence”. EL96, 1996, 243.
    [43] Pudzich, R.; Fuhrmann-Lieker, T.; Salbeck. J. “Spiro compounds for
    organic electroluminescence and related applications”. Adv. Polym. Sci.
    2006, 199, 83-142.
    [44] Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Baena, J. P.;
    Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt,
    A.; Gra¨tzel, M. “Cesium-containing triple cation perovskite solar cells:
    improved stability, reproducibility and high efficiency”. Energy Environ.
    Sci. 2016, 9, 1989-1997.
    [45] Hu, Z.; Fu, W.; Yan, L.; Miao, J.; Yu, H.; He, Y.; Goto, O.; Meng, H.;
    Chen, H. Z.; Huang, W. “Effects of heteroatom substitution in
    spirobifluorene hole transport materials”. Chem. Sci. 2016, 7, 5007-5012.
    138
    [46] Bi, D.; Xu, B.; Gao, P.; Sun, L.; Grätzel, M.; Hagfeldt, A. “Facile
    synthesized organic hole transporting material for perovskite solar cell
    with efficiency of 19.8%”. Nano Energy 2016, 23, 138-144.
    [47] Xu, B.; Bi, D.; Hua, Y.; Liu, P.; Cheng, M.; Gratzel, M.; Kloo, L.;
    Hagfeldt, A.; Sun, L. “A low-cost spiro[fluorene-9,9′-xanthene]-based
    hole transport material for highly efficient solid-state dye-sensitized solar
    cells and perovskite solar cells”. Energy Environ. Sci. 2016, 9, 873-877.
    [48] Popov, A. A.; Yang, S. F.; Dunsch, L. “Endohedral fullerenes”. Chem.
    Rev. 2013, 113, 5989-6113.
    [49] Kratschmer, L. D.; Lamb, K.; Huffman, D. R. “A solid C60: a new form of
    carbon”. Nature 1990, 347, 354-357.
    [50] Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smally, R. E. “C60:
    Buckminsterfullerene”. Nature 1985, 318, 162-163.
    [51] Hirsch, A.; Brettreich, M.; “Fullerenes: chemistry and reactions”. 2005,
    DOI:10.1002/3527603492.
    [52] Ruoff, R. S.; Tse, Doris, S.; Malhotra, R.; Lorents, D.C. “Solubility of
    fullerene (C60) in a Variety of Solvents”. J. Phys. Chem. 1993, 97, 3379-
    3383.
    [53] Hummelen, J.C.; Knight, B. W.; Peq, F. L.; Wudl, F.; Yao, J.; Wilkins,
    C.L. “Preparation and characterization of fulleroid and methanofullerene
    derivatives”. J. Org. Chem. 1995, 60, 3, 532-538.
    [54] Bingel, C. “Cyclopropanierung von Fullerenen”. Chemische
    Berichte. 1993, 126, 8, 1957.
    [55] Ricardo K. M.; Bouwer, J. C.; Hummelen, “The use of tethered addends
    to decrease the number of isomers of bisadduct analogues of PCBM”.
    Chem. Eur. J. 2010, 16, 11250-11253.
    [56] Kim, K. H.; Kang, H.; Nam, S. Y.; Jung, J.; Kim, P. S.; Cho, H.; Lee, C.;
    Yoon, S.C.; Kim, B. J. “Facile synthesis of o-xylenyl fullerene
    139
    multiadducts for high open circuit voltage and efficient polymer polar
    cells”. Chem. Mater. 2011, 23, 5090-5095.
    [57] Yan, W.; Seifermann, S. M.; Pierratd, P.; Bräse, S. “Synthesis of highly
    functionalized C60 fullerene derivatives and their applications in material
    and life sciences”. Org. Biomol. Chem. 2015, 13, 25-54.
    [58] Tan, H.; Jain, A.; Voznyy, O.; Lan, X.; García de Arquer, F. P.; Fan, J. Z.;
    Quintero-Bermudez, R.; Yuan, M.; Zhang, B.; Zhao, Y. “Efficient and
    stable solution-processed planar perovskite solar cells via contact
    passivation”. Science 2017, 355, 6326, 722-726.
    [59] Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z.; Wu,
    J.; Zhang, X.; You, J. “Enhanced electron extraction using SnO2 for highefficiency
    planar-structure HC(NH2)2PbI3-based perovskite solar cells”.
    Nat. Energy 2017, 2, 16177.
    [60] Cao, J.; Wu, B.; Chen, R.; Wu, Y.; Hui, Y.; Mao, B. W.; Zheng, N.
    “Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as
    electron-transport layer: effect of surface passivation”. Adv. Mater. 2018,
    30, 11, 1705596.
    [61] Yang, Z.; Dou, J. J.; Wang, M. Q. “Interface engineering in n-i-p metal
    halide perovskite solar cells”. Sol. RRL. 2018, 1800177.
    [62] Abrusci, A.; Stranks, S. D.; Docampo, P.; Yip, H. L.; Jen, A. K.; Snaith,
    H. J. “High-performance perovskite-polymer hybrid solar cells via
    electronic coupling with fullerene monolayers”. Nano Lett. 2013, 13,
    3124.
    [63] Wojciechowski, K.; Stranks, S. D.; Abate, A.; Sadoughi, G.; Sadhanala,
    A.; Kopidakis, N.; Rumbles, G.; Li, C.Z.; Friend, R. H.; Jen, A. K. Y.;
    Snaith, H. J. “Heterojunction modification for highly efficient organic–
    inorganic perovskite solar cells”. ACS Nano 2014, 8, 12701-12709.
    [64] Guo, X.; Juan, B. Z.; Lin, Z.; Ma, J.; Su, J.; Zhu, W.; Zhang, C.; Zhang,
    J.; Chang, J. J.; Hao, Y. “Interface engineering of TiO2/perovskite
    140
    interface via fullerene derivatives for high performance planar perovskite
    solar cells”. Organic electronics 2018, 62, 459-467.
    [65] Cao, T.; Wang, Z.; Xia, Y.; Song, B.; Zhou, Y.; Chen, N.; Li, Y. F.
    “Facilitating electron transportation in perovskite solar cells via watersoluble
    fullerenol interlayers”. ACS Appl. Mater. Interfaces 2016, 8,
    18284- 18291.
    [66] Dong, Y.; Li, W.; Zhang, X.; Xu, Q.; Liu, Q.; Li, C.; Bo, Z. “Highly
    efficient planar perovskite solar cells via interfacial modification with
    fullerene derivatives”. Small 2016, 12, 1098-1104.
    [67] Liu, C.; Wang, K.; Du, P.; Meng, T.; Yu, X.; Cheng, S. Z.; Gong, X.
    “High performance planar heterojunction perovskite solar cells with
    fullerene derivatives as the electron transport layer”. ACS Appl. Mater.
    Interfaces 2015, 7, 1153-1159.
    [68] Cai, F.; Yang, L.; Yan, Y.; Zhang, J.; Qin, F.; Liu, D.; Bing, Y.; Zhou, Y.;
    Wang, T. “Eliminated hysteresis and stabilized power output over 20% in
    planar heterojunction perovskite solar cells by compositional and surface
    modifications to the low-temperature-processed TiO2 layer”. J. Mater.
    Chem. A 2017, 5, 9402-9411.
    [69] Wang, H,; Cai, F.; Zhang, M.; Wang, P.; Yao, J.; Gurney, R. S.; Li, F.;
    Liu, D.; Wang, T. “Halogen-substituted fullerene derivatives for interface
    engineering of perovskite solar cells”. J. Mater. Chem. A 2018, 6, 21368-
    1378.
    [70] Wang, P.; Cai, F.; Yang, L.; Yan, Y.; Cai, J.; Wang, H.; Gurney, R. S.;
    Liu, D.; Wang, T. “Eliminating light-soaking instability in planar
    heterojunction perovskite solar cells by interfacial modifications”. ACS
    Appl. Mater. Interfaces 2018, 10, 33144-33152.
    [71] Kang, T.; Tsai, C.-M.; Jiang, Y.-H.; Gollavelli, G.; Mohanta, N.; Diau, E.
    W.-G.; Hsu, C.-S. “Interfacial engineering with cross-linkable fullerene
    141
    derivatives for high-performance perovskite solar cells”. ACS Appl.
    Mater. Interfaces 2017, 9, 38530-38536.
    [72] Zhou, Y.; Wu, B.; Lin, G.; Li, Y.; Chen, D.; Zhang, P.; Yu, M.; Zhang,
    B.; Yun, D. “Enhancing performance and uniformity of perovskite solar
    cells via a solution-processed C70 interlayer for interface engineering”.
    ACS Appl. Mater. Interfaces 2017, 9, 33810-33818.
    [73] Zhou, Y. Q.; Wu, B. S.; Lin, G.H.; Xing, Z.; Li, S. H.; Deng, L. L.; Chen,
    D. C.; Yun, D.Q.; Xie, S.Y. “Interfacing pristine C60 onto TiO2 for viable
    flexibility in perovskite solar cells by a low-temperature all-solution
    Process”. Adv. Energy Mater. 2018, 8, 1800399.
    [74] Li, C.-Z.; Chueh, C.-C.; Yip, H.-L.; Ding, F.; Li, X.; Jen, A. K.- Y.
    “Solution-processible highly conducting fullerenes”. Adv. Mater. 2013,
    25, 2457-2461.
    [75] Saha, S. “Anion-induced electron transfer”. Acc. Chem. Res., 2018, 51,
    2225-2236.
    [76] Bradley, C.; Lonergan, C, L. “Limits on anion reduction in an ionically
    functionalized fullerene by cyclic voltammetry with in situ conductivity
    and absorbance spectroscopy”. J. Mater. Chem. A 2016, 4, 8777–8783.
    [77] Li, C. Z.; Chueh, C. C.; Ding, F. Z.; Yip, H. L.; Liang, P. W.; Li, X. S.;
    Jen, A. K. Y. “Doping of fullerenes via anion-induced electron transfer
    and its Iimplication for surfactant facilitated high performance polymer
    solar cells”. Adv. Mater. 2013, 25, 4425−4430.
    [78] Kim, J. H.; Chueh, C.-C.; Williams, S. T.; Jen, A. K.-Y. “Room
    temperature, solution-processable organic electron extraction layer for
    high-performance planar heterojunction perovskite solar cells”. Nanoscale
    2015, 7, 17343−17349.
    [79] Deng, L.-L.; Xie, S. Y.; Gao, F. “Fullerene-based materials for
    photovoltaic applications: toward efficient, hysteresis-free, and stable
    perovskite solar cells”. Adv. Electron. Mater. 2017, 1700435.
    142
    [80] Zhang, F.; Jiang, K.; Huang, J.; Yu, C.; Li, S.; Chen, S. M. “A novel
    compact DPP dye with enhanced light harvesting and charge transfer
    properties for highly efficient DSCs”. J. Mater. Chem. A 2013, 1, 4858-
    4863.
    [81] Zhao, B.; Sun, K.; Xue, F.; Ouyang, J. “Isomers of dialkyl diketo-pyrrolopyrrole:
    Electron-deficient units for organic semiconductors”. Org.
    Electron., 2012, 13, 2516–2524.
    [82] Liu, S. Y.; Shi, M.; Huang, J.; Jin, Z.; Hu, X. Pan, J.; Li, H.; Jen, A. K.
    Y.; Chen, H. Z. “C–H activation: making diketopyrrolopyrrole derivatives
    easily accessible”. J. Mater. Chem. A 2013, 1, 2795-2805.
    [83] Zhang, J.; Kang, D. Y.; Barlow, S.; Marder, S. R. “Transition metalcatalyzed
    C–H activation as a route to structurally diverse di(arylthiophenyl)-
    diketopyrrolopyrroles”. J. Mater. Chem. 2012, 22, 21392.
    [84] Okamoto, K.; Zhang, J.; Housekeeper, J. B.; Marder, S. R.; Luscombe, C.
    K. “C-H Arylation reaction: atom efficient and greener syntheses of π-
    conjugated small molecules and macromolecules for organic electronic
    materials”. Macromolecules 2013, 46, 8059-8078.
    [85] Brabec, C. J.; Winder, C.; Saricific, N. S.; Hummelen, J. C.; Dhanabalan,
    A.; van Hal, P. A.; Janssen, R. A. J. “A Low‐bandgap semiconducting
    polymer for photovoltaic devices and infrared emitting diodes”. Adv.
    Funct. Mater. 2002, 12, 709-712.
    [86] Xie, L.-H.; Liu, F.; Tang, C.; Hou, X.-Y.; Hua, Y.-R.; Fan, Q.-L.; Huang,
    W. “Unexpected one-pot method to synthesize spiro- [fluorene-9,9′ -
    xanthene] building blocks for blue-light-emitting materials”. Org. Lett.
    2006, 8, 2787-2790.
    [87] Bhanuchandra, M.; Yorimitsu, H.; Osuka, A. “Synthesis of spirocyclic
    diarylfluorenes by one-pot twofold SNAr reactions of diaryl sulfones with
    diarylmethanes”. Org. Lett. 2016, 18, 384-387.
    143
    [88] Saragi, T. P. I.; Spehr, T.; Siebert, A.; Lieker, T. F.; Salbeck, J. “Spiro
    compounds for organic optoelectronics”. Chem. Rev. 2007, 107, 1011-
    1065.
    [89] Quere, D. “Wetting and roughness”. Annu. Rev. Mater. Res. 2008, 38, 71-
    99.
    [90] Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y.; Xiao, Z.; Huang, J. “Non-wetting
    surface-driven high-aspect-ratio crystalline grain growth for efficient
    hybrid perovskite solar cells”. Nat. Commun. 2015, 6, 7747-7783.
    [91] Chiang, C. H.; Nazeeruddin, M. K.; Gratzel, M.; Wu, C. G. “The
    synergistic effect of H2O and DMF towards stable and 20% efficiency
    inverted perovskite solar cells”. Energy Environ. Sci. 2017, 10, 808-817.
    [92] Li, H.; Haque, S. A.; Kitaygorodskiy, A.; Meziani, M. J.; Castillo, M. T.;
    Sun, Y. P. “Alternatively modified Bingel reaction for efficient syntheses
    of C60 hexakis- adducts”. Org. Lett. 2006, 8, 5641-5643.
    [93] Richardson, C. F.; Schuster, D. I.; Wilson, S. R. “Synthesis and
    characterization of water-soluble amino fullerene derivatives”. Org. Lett.
    2000, 2, 1011-1014.
    [94] Guldi, D. M.; Hungerbuhler, H,; Asmus, K. D. “Unusual redox behavior
    of a water soluble malonic acid derivative of C60: evidence for possible
    cluster formation”. J. Phys. Chem. 1995, 99, 13487-13493.
    [95] Ajie, H.; Alvarez, M. M.; Anz, S. J.; Beck, R. D.; Diederich, F.;
    Fosliropoulos, K.; Huffman, D. R.; Kratschmer, W.; Rubin, Y.; Schriver,
    K. E.; Sensharma, D.; Whetten, R. L. “Characterization of the soluble allcarbon
    molecules C60 and C70”. The Journal of Physical Chemistry 1990,
    94, 8631-8633.
    [96] Cataldo, F.; Groth, S.I.; Hafez, Y. “On the molar extinction coefficients of
    the electronic absorption spectra of C60 and C70 fullerenes radical cation”.
    Eur. Chem. Bull. 2013, 2, 1013-1018.
    144
    [97] Diao, G.; Li, L.; Zhang, Z. “The electrochemical reduction of fullerenes,
    C60 and C70”. Talanta 1996, 43, 1633-1637.
    [98] Benson-Smith, J. J.; Ohkita, H.; Cook, S.; Durrant, J. R.; Bradley, D. D.
    C.; Nelson, J. “Charge separation and fullerene triplet formation in bled
    films of polyfluorene polymers with PCBM”. J. Dalton Trans. 2009,
    10000-10005.
    [99] Ma, J.; Chang, J.; Lin, Z.; Guo, X.; Zhou, L.; Liu, Z.; Xi, H.; Chen, D.;
    Zhang, C.; Hao, Y. “Elucidating the role of TiCl4 and PCBM fullerene
    treatment on TiO2 electron transporting Layer for highly efficinet planar
    perovskite solar cells”. J. Phys. Chem. C. 2018, 122, 1044-1053.
    [100] Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H. “Hysteresis-less
    inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1%
    power conversion efficiency”. Energy Environ. Sci. 2015, 8, 1602-1608.
    [101] Heo, J. H.; Song, D. H.; Im, S. H. “Planar CH3NH3PbBr3 hybrid solar
    cells with 10.4% power conversion efficiency, fabricated by controlled
    crystallization in the spin-coating process”. Adv. Mater. 2014, 26, 8179-
    8183.
    [102] Liu, C.; Wang, K.; Du, P.; Meng, T.; Yu, X.; Cheng, S. Z. D.; Gong, X.
    “High performance planar heterojunction perovskite solar cells with
    fullerene derivatives as the electron transport layer”. ACS Appl. Mater.
    Interfaces 2015, 7, 1153-1159.
    [103] Koh, T. M.; Fu, K.; Fang, Y.; Chen, S.; Sum, T. C.; Mathews, N.;
    Mhaisalkar, S. G.; Boix, P. P.; Baikie, T. “Formamidinium containing
    metal-halide: an alternative material for near-IR absorption perovskite
    solar cells”. J. Phys. Chem. C 2013, 118, 16458-16462.
    [104] Cao, T.; Huang, P.; Zhang, K.; Sun, Z.; Zhu, K.; Yuan, L.; Chen, K.;
    Chen, N.; Li, Y. F. “Interfacial engineering via inserting functionalized
    water-soluble fullerene derivative interlayers for enhancing the
    145
    performance of perovskite solar cells”. J. Mater. Chem. A 2018, 6, 3435-
    3443
    [105] Chena, K.; Cao, T,; Suna, Z.; Wang, D.; Chen, N.; LI, Y. F. “Performance
    enhancement of perovskite solar cells through interfacial engineering:
    Water-soluble fullerenol C60(OH)16 as interfacial modification layer.”
    Organic Electronics 2018, 62, 327-334”.
    [106] Mosconi, E.; Ronca, E.; De Angelis, F. “First-principles investigation of
    the TiO2/organohalide perovskites interface: The role of interfacial
    chlorine”. J. Phys. Chem. Lett. 2014, 5, 2619-2625.

    QR CODE
    :::