跳到主要內容

簡易檢索 / 詳目顯示

研究生: 呂易明
I-Ming Lu
論文名稱: 以高分子聚合物波導及微透鏡設計適用於4通道× 25-Gbps單模光學連接模組之光學系統
Design of Optical System for 4-Channel × 25-Gbps Single-Mode Optical Interconnect Module Using Polymer Waveguides and Micro-Lenses
指導教授: 伍茂仁
Mount-Learn Wu
張正陽
Jenq-Yang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 60
中文關鍵詞: 高分子聚合物波導微透鏡
外文關鍵詞: Polymer Waveguide, Micro Lens
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中以單模光學軟性電路板設計適用於4通道 × 25-Gbps 單模光學連接收發模組光學系統,此系統整合了高分子聚合物波導、分布式回饋雷射、微透鏡、45˚微反射面、光檢測器及12芯光纖陣列。
    以Lumerical Inc.所開發的FDTD模擬軟體,應用傅氏光學的技巧來模擬雷射經過透鏡耦合至波導的成像行為。在波導設計引入S型彎曲波導波導使750 μm通道間隔的分布式回饋雷射經過S型彎曲波導波導後扇入至250 μm通道間格,使其可與常規250 μm的單模光纖陣列偶合。於光學模擬中得到發射端由分布式回饋雷射,經過微透鏡後,聚焦耦合進入單模高分子聚合物波導中,經過S型彎曲波導波導後耦合至單模光纖的光學耦合效率達41.8%,反射回雷射僅0.8%。
    此光學系統之藉由主動對準方式使分布式回饋雷射與高分子聚合物波導間的位置誤差在最高光學效率降為-1 dB時,偏移容忍度分別為>  40 m以上,透鏡於最佳偶合位置偏離光軸之偏移容忍度為 0.7 m。


    This study proposed a single mode 4 channel  25-Gbps optical interconnect module basing on single mode flexible printed circuit board (FPC). The polymer waveguide (PWG), distributed feedback laser diode (DFB LD) , micro lens, 45 micro-reflector, photodiode, and 12ch single mode fiber array were integrated in this module.
    Simulation Software is Lumerical FDTD. We applied fourier optics technique to simulate the DFB LD coupling to PWG via micro lens. In PWG design, we adopt the S-bend waveguide to Fan-In the channel pitch. The simulation of optical coupling efficiency is 41.8 % from the DFB LD to single-mode fiber (SMF).
    The optical system is 1-dB alignment tolerances of DFB LD and PWG are more than 40 m. The lens shift from optical axis is 0.7 m.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 前言 1 1-2數據中心之光學連接架構與單模光連接模組運用 4 1-3單模光連接收發模組發展現況 6 1-4利用軟性電路板架構設計光連接收發模組 10 第二章 光學引擎之光波導設計 13 2-1單模高分子聚合物波導尺寸與單模光纖耦合模擬 13 2-2單模高分子聚合物波導S型彎曲波導設計與模擬 15 2-3單模高分子聚合物波導之設計及結果 18 第三章 發射端之光學模擬 20 3-1 以FDTD模擬光學遠場行為之技巧 20 3-1-1 繞射極限下之透鏡成像行為 21 3-1-2 空間頻譜傳播法 28 3-2 雷射經微透鏡耦合至高分子聚合物波導模擬 28 3-3 發射端光學耦合公差分析 32 3-4 應用於PSM4模組之可行性 39 第四章 結論 41 4-1 結論 41  

    [1] Cisco, “Cisco Global Cloud Index: Forecast and Methodology, 2016–2021 White Paper,” https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
    [2] João Marques Lima: “World’s Top 10 Largest Data Centers,” 2017, Aug. 16,
    https://data-economy.com/worlds-top-10-largest-data-centres/
    [3] Rang-Chen Yu. (2017 November) “Efficient 100G and 400F Data Center Optical Solutions,” Paper presented at the European Conference on Optical Communication, Gothenburg, Sweden
    [4] LightCounting, “High Speed Ethernet Optics. 2018 March,”
    https://www.lightcounting.com/
    [5] T.Suzuki et al., “Cost-effective light-emission optical sub-assembly for datacenter networks,” vol. 10131, p. 101310B, 2017.
    [6] R. Dangel et al., “Polymer waveguides enabling scalable low-loss adiabatic optical coupling for silicon photonics,” IEEE J. Sel. Top. Quantum Electron., vol. 24, no. 4, 2018.
    [7] 周祥麟,“以高分子聚合物步階式折射率波導設計適用於4通道 × 25 Gbps 單模光連接收發模組之光學系統”, (中央大學光電所碩士論文,台灣,2018)
    [8] R. K. Navalakhe, N. DasGupta, and B. K. Das, “Fabrication and characterization of straight and compact S-bend optical waveguides on a silicon-on-insulator platform.,” Appl. Opt., vol. 48, no. 31, pp. G125–G130, 2009.
    [9] I. J. Devayani, A. Syahriar, and D. Astharini, “Characteristics of S-bend optical waveguides based on back-to-back and sinusoidal structures,” Proc. 2014 Int. Conf. Electr. Eng. Compute. Sci. ICEECS 2014, vol. 2, no. November, pp. 65–68, 2014.
    [10] Joseph W. Goodman, “Introduction to Fourier Optics,” Roberts & Company, Colorado, 2004
    [11] J. Vaillant, A. Crocherie, F. Hirigoyen, A. Cadien, and J. Pond, “Uniform illumination and rigorous electromagnetic simulations applied to CMOS image sensors.,” Opt. Express, vol. 15, no. 9, pp. 5494–5503, 2007.
    [12] K. R. Mahmoud, “Limitations of approximations towards fourier optics for indoor active millimeter wave imaging systems.,” Progress In Electromagnetics Research, vol. 109, pp. 245–262, 2010.
    [13] S. Adachi., Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1−xAs, and In1−xGaxAsyP1−y, J. Appl. Phys. 66, 6030-6040 (1989)
    [14] G. D. Pettit et al., “Refractive index of InP,” J. Appl. Phys., vol. 36, no. 6, p. 2081, 1965.
    [15] L. Liu, Z. Jiang, T. Wang, and J. Guo, “The inverse transformation of angular spectrum propagation algorithm and its application to phase retrieval,” J. Mod. Opt., vol. 62, no. 5, pp. 369–376, 2015.

    [16] T. Shimobaba, K. Matsushima, T. Kakue, N. Masuda, and T. Ito, “Scaled angular spectrum method,” Opt. Lett., vol. 37, no. 19, p. 4128, 2012.
    [17] A. Elmaklizi, J. Schäfer, and A. Kienle, “Simulating the scanning of a focused beam through scattering media using a numerical solution of Maxwell’s equations,” J. Biomed. Opt., vol. 19, no. 7, p. 071404, 2014.

    QR CODE
    :::