| 研究生: |
宋睿唐 Ruitang Soong |
|---|---|
| 論文名稱: |
分散式降雨逕流模式之建立及暴雨時期流量之模擬 The development of distributed rainfall-runoff model and the simulation of basin storm discharge |
| 指導教授: |
李明旭
Ming-Hsu Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 水文與海洋科學研究所 Graduate Instittue of Hydrological and Oceanic Sciences |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 逕流模擬 、颱風事件 、分散式水文模式 、水庫集水區 |
| 外文關鍵詞: | runoff simulation, typhoon event, distributed hydrologic model, reservoir basin |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究目的為建立一套分析預測颱風事件水庫集水區逕流反應特性之分散式水文模式。研究使用資料來源分為雨量及流量兩部分,臺灣地區之降雨分布資料來自於中央氣象局之自記雨量站,而研究區域(水庫集水區)之雨量站則來自於水利屬及水庫管理局,水庫入流量資料則來自各水庫管理局。
本研究以自行開發之分散式水文模式模擬颱風期間翡翠與石門水庫入流量,利用賀伯(1996)、瑞伯(1998)及納莉(2001)等三場颱風事件進行模式檢定與驗證,並分析北勢溪主流及部分支流在颱風事件下的特性。研究發現颱風事件下模式所估計水庫入流量,對使用不同空間分布特性降雨資料之模擬結果差異有限,但若需要對水庫上游集水區逕流情形進行分析時,則建議採用空間分布降雨資料進行模擬。分析降雨資料時發現集水區雨量站數量會決定總雨量推估值的精確性,雨量站數愈多所計算之總雨量的標準差愈小。目前使用小時解析度之雨量資料,所發展模式對於短時間生成洪峰反應敏感性較差,分析結果顯示使用時間解析度較佳的降雨資料,能改善模式對短時間生成洪峰量的預測能力。
The purpose of this study is to apply a distributed hydrologic model to simulate typhoon floods of reservoir watersheds in Taiwan. Observed precipitation and reservoir inflows are used to drive the model and to calibrate model’s parameters. Island wide rainfall patterns are analyzed from the data of the CWB (Central Weather Bureau) auto-recorded rain gages. Rainfall data and reservoir inflows of studied areas are provided by the WRA (Water Resource Agency) and the reservoir administration agencies.
A newly developed distributed hydrologic model is employed to simulated reservoir inflows of Feitsui and Shihmen reservoirs in typhoon events. Three typhoon events, Herb (1996), Zeb (1998), and Nari (2001) are applied for model calibration and validation. Simulated results are further retrieved to analyze the upstream runoff characteristics of the Beishi creek.
Three important conclusions are obtained in this study. First, different spatial rainfall patters did not significantly affect the reservoir inflows simulated by the distributed hydrologic model developed in this study. However, the runoff characteristics of upstream sub-basins can only be seen with the input of distributed rainfalls and the simulations of distributed hydrologic model. Second, the more raingages used for estimating basin total rainfalls, the less deviation can be obtained. Finally, the developed model is not sensitive to quick runoff generated by intensive rainfall in short periods due to the current rainfall resolution of one hour. To improve the capability of the model on predicting typhoon floods, it is suggested to use a higher temporal resolution of rainfall data in future studies.
[1] Bendient, P. B., W. C., 2002, Huber, Hydrology and floodplain analysis, 3rd ed., Prentice Hall.
[2] Beven, K. J. and M. J. Kirkby, 1979 A physically based variable contributing area model of basin hydrology, Hydrological Sciences Bulletin, 24(1): 43-69.
[3] Beven, K. J. and I. D. Moore, 1993, Terrain analysis and distributed modelling in hydrology, John Wiley & Sons.
[4] Beven, K. J., 2000, Rainfall-runoff modeling: the primer, John Wiley & Sons.
[5] Chang, K.-T., 2004, Introduction to geographic information systems, 2nd ed., McGraw-Hill.
[6] Crawford, N. H. and R. K. Linsley, 1966, Digital simulation in hydrology: Stanford Watershed Model IV, Technical Report, 39.
[7] Douglas, D. H., 1986, Experiments to locate ridges and channels to create a new type of digital elevation model: Cartographica, 23(4): 29-61.
[8] Dingman, S. L., 2002, Physical hydrology, 2nd ed., Prentice Hall.
[9] Dutta, D., S. Herath, and K. Musiake, 2000, Flood inundation simulation in a river basin using a physically based distributed hydrologic model, Hydrological Processes, 14: 497-519.
[10] Environmental Systems Research Institute (ESRI): 1996, ArcView Spatial Analyst users manual.
[11] Flood Hazard Simulation—Short Course Manual Description of the FLO-2D Model, 1998.
[12] Freeze, R.A. and R.L. Harlan, 1969, Blueprint for a physically-based digitally simulated hydrologic response model, Journal of Hydrology, 9: 237-258.
[13] Fischenich, C., 2000, Robert Manning (a historical perspective), EMRRP-SR-10. http://www.wes.army.mil/el/emrrp/tnotes.html
[14] GRASS Development Team, 1999, GRASS GIS—simulation models, hydrologic modelling: r.hydro.CASC2D
http://grass.polytechnic.edu.na/modelintegration.html
[15] Hutchinson, M. F., 1989, A new procedure for gridding elevation and stream line data with automatic removal of spurious pits, Journal of Hydrology, 106: 211-232.
[16] Jasper, K., J. Gurtz, and H. Lang, 2002, Advanced Flood Forecasting in Alpine Watershed by Coupling Meteorological Observations and Forecasts with a Distributed Hydrological Model, Journal of Hydrology, 267: 40-52.
[17] Jenson, S. K. and J. O. Domingue, 1988, Extracting topographic structure from digital elevation data for geographic information system analysis, Photogrammeteric Engineering and Remote Sensing, 54(11): 1593-1600.
[18] Ibbitt, R. P., R. D. Henderson, J. Copeland, and, D. S. Wratt, 2001, Simulating mountain runoff with meso-scale weather model rainfall estimates: a New Zealand experience, Journal of Hydrology, 239: 19-32.
[19] Julien, P. Y., B. Saghafian, and F. L. Ogden, 1995, Raster-based hydrologic modeling of spatiality-varied surface runoff, Water Resources Bulletin, 31(3): 523-536.
[20] Karnieli, A. M., M. H. Diskin, and L. J. Lane, 1994, CELMOD5—a semi-distributed cell model for conversion of rainfall into runoff in semi-arid watersheds, Journal of Hydrology, 157: 61-85.
[21] Karvonen, T., H. Koivusalo, M. Jauhiainen, J. Palko, and K. Weppling, 1999, A hydrological model for predicting runoff from different land use areas, Journal of Hydrology, 217: 253-265.
[22] Koussis, A. D., K. Lagouvardos, K. Mazi, V. Kotronli, D. Sitzmann, J. Lang, H. Zaiss, A. Buzzi, and P. Malguzzi, 2003, Flood Forecasts for Urban Basin with Integrated Hydro-Meteorological Model, Journal of Hydrologic Engineering, 8: 1-11.
[23] Mackay, D. S. and L. E. Band, 1998, Extraction and representation of nested catchment areas from digital elevation models in lake-dominated topography, Water Resources Research, 34(4): 897-901.
[24] Mark, D. M., 1983, Automated detection of drainage networks for digital elevation models: Proceedings of Auto-Carto 6, 2: 288-298.
[25] Naef, F., S. Scherrer, and M. Weiler, 2002, A process based assessment of the potential to reduce flood runoff by land use change. Journal of Hydrology, 267: 74-79.
[26] Nelder J. A. and Mead R., 1965, A simplex method for function minimization. Computing Journal 7: 308-313.
[27] O’Callaghan, J. F. and D. M Mark, 1984, The extraction of drainage networks from digital elevation data, Computer Vision, Graphics and Image Processing, 28: 328-344.
[28] Quinn, P., K. Beven, P. Chevallier, and O. Planchon, 1991, The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models, Hydrological Processes, 5: 59-79.
[29] Schultz G. A., 1995, Changes on flood characteristics due to land use changes in a river basin, U.S.- Italy Research Workshop on the Hydrometeorology, Impacts, and Management of Extreme Floods.
[30] Storck, P., L. Bowling, P. Wetherbee, and D. Lettenmaier, 1998, Application of a GIS-based distributed hydrology model for prediction of forest harvest effects on peak stream flow in the Pacific Northwest, Hydrological Processes, 12(6): 889-904.
[31] Syed, K. H., D. C. Goodrich, D. E. Myers, and S. Sorooshian, 2003, Spatial characteristics of thunderstorm rainfall fields and their relation to runoff, Journal of Hydrology, 271: 1-21.
[32] Tarboton, D.G., 1997, A New Method for The determination of flow directions and upslope areas in grid digital elevation models, Water Resources Research, 33(2): 309-319.
[33] Tomlin, C. D., 1990, Geographic information systems and cartographic modeling, Prentice Hall, p.2-61.
[34] Wigmosta, M. S., L. W. Vail, and D. P. Lettenmaier, 1994, A distributed hydrology-vegetation model for complex terrain, Water Resource Research, 30(6): 1665-1679.
[35] Wilson, J. P. and J. C. Gallant, 2000, Terrain analysis: principles and applications, John Wiley & Sons.
[36] Wohl, E. E., 2000, Inland flood hazards: human, riparian, and aquatic communities, Cambridge University Press.
[37] Wu, C. C., T. H. Yen, Y. H. Kuo, and W. Wang, 2002, Rainfall Simulation Associated with Typhoon Herb (1996) near Taiwan. Part I: The topographic effect. Weather Forecasting, 17: 1001-1015.
[38] Zhang, W. H. and D. R. Montgomery, 1994, Digital elevation model grid size, landscape representation, and hydrologic simulations, Water Resource Research, 30: 1019-1028.
[39] Zhang Y. and J. A. Smith, 2002, Space time variability of rainfall and extreme flood response in the Menomonee river basin, Wisconsin, Journal of Hydrometeorology, 4: 506-517.
[40] Zhou, Q. Y., J. Shimada, and A. Sato, 2002, Temporal variations of the three-dimensional rainfall infiltration process in heterogeneous soil, Water Resource Research, 38(4): 1029-1044.
[41] 中央氣象局,颱風百問,http://e-service.cwb.gov.tw/docs/V3.0/knowledge/typhone/typhone_all.htm
[42] 中央氣象局,颱風資料庫,http://photino.cwb.gov.tw/rdcweb/new_tydbs.htm
[43] 王如意、周家培,1987年,淡水河問題研究—翡翠水庫上游集水區適用降雨逕流模式之研究,國科會防災科技研究報告。
[44] 王如意、李如晃,1993年,曾文溪流域綜合性研究降雨逕流預測模式之研究,國科會防災科技研究報告。
[45] 王時鼎,1984年,臺灣區域各大水庫最大可能降水量(PMP)預報之研究,第二屆水利工程研討會論文集。
[46] 王時鼎,1992年,侵臺颱風路徑、強度、結構集風雨整合研究,國科會防災科技研究報告。
[47] 曲克恭、陳正改,1988年,琳恩颱風豪雨研究,大氣科學,第16期,第3號,第253-262頁。
[48] 李明旭、童慶斌、宋睿唐、楊弈岑,2003年,極端降水對水文之影響與因應對策 (I) ,國科會補助專題研究計劃成果報告。
[49] 宋睿唐、李明旭,2003年,數值地形模型窪地對逕流延遲影響之研究,2003年中華地理資訊學會年會暨學術研討會論文集,S006,高雄。
[50] 吳宗堯、謝信良、喬鳳倫、陳政改,1981年,曾文水庫集水區降水特性分析及颱風降水預報之研究,大氣科學,第8期,第1-18頁。
[51] 陳正改,1986年,翡翠水庫集水區降雨特性分析及颱風降水預報之研究,臺灣水利,第34卷,第3期,第29-52頁。
[52] 陳正改,1987年,新店溪流域颱風定量降雨預報之研究,台灣水利,第35卷,第4期,第64-97頁。
[53] 張靜茹、張良綱,1996年,源頭既清 波瀾自闊—大台北的兩座水庫,光華雜誌,第二十一卷,第十一期。
[54] 經濟部水利署,2001,中華民國九十年臺灣水文年報 第二部分 河川水位及流量。
[55] 魏元恆、林民生、謝信良,1971年,颱風特性與臺灣降雨量之研究,氣象學報,第17卷,第3期,第1-17頁。