| 研究生: |
廖俞欽 Yu-Chin Liao |
|---|---|
| 論文名稱: |
中低密度高熵合金之合金設計與其微結構變化之研究 Alloy design and microstructure evolution of the medium-low density high entropy alloys |
| 指導教授: |
鄭憲清
Shian-Ching Jang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 高熵合金 、中低密度 |
| 外文關鍵詞: | high entropy alloys, medium-low density |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討新型的中低密度高熵合金之成分設計,其目標為設計出密度低於5 g/cm3的高熵合金且其微結構經過熱處理後仍維持在單一相或是雙相。首先由低密度的元素Ti以及Al為基底著手進行成份設計,配合符合高熵相關參數之模擬計算從TiAlX三元合金逐步添加不同的元素至四元合金以及五元合金,並經由實驗結果找出最合適的成分設計。合金原料先經由真空電弧熔煉及墜落鑄造後形成合金鑄錠,然後再置於真空高溫爐中進行 800℃/24小時均質化熱處理。鑄造狀態及處理後的試片再經研磨拋光後進行XRD微結構分析、OM和SEM/EDS金相觀察及硬度試驗。由微結構分析發現TiAlVCrFe (=5.72 g/cm3), TiAlVCrMn (=5.55 g/cm3), TiAlVCrCu (=5.61g/cm3) 三種五元高熵合金的鑄錠均為單一相BCC結構,其硬度均在Hv 650左右。此外,TiAlVCrFe (=5.72 g/cm3), TiAlVCrMn (=5.55 g/cm3) 高熵合金經800℃/24小時熱處理後,由於析出強化作用,其硬度提升至Hv 800。相信此兩種五元系列合金經微調增高其Ti和Al元素成份比率,將可獲得密度低於5 g/cm3且具有單一相或是雙相結構的高熵合金。
In this study, we tried to design the medium-low density high entropy alloys (HEAs) (contains at least 5 elements and the density of the alloys are below 5 g/cm3) by empirical phase-formation rules. Meanwhile, these HEAs should remain a structure of single phase or two phases after heat treatment. Therefore, we start to study the HEAs from the TiAlX alloy (3 elements), then add the fourth and fifth elements step by step based on the parameter calculation which related to the requirement of HEA. The high entropy alloys ingots were firstly prepared by vacuum arc-melting and drop casting, and then homogenizing at 800℃for 24h in vacuum. The as-cast and heat treated samples were characterized by XRD analysis, OM and SEM/ESD examination, and Vickers’ hardness test. The XRD results reveal that the as-cast TiAlVCrFe (=5.72 g/cm3), TiAlVCrMn (=5.55 g/cm3), TiAlVCrCu (=5.61 g/cm3) HEAs showed the BCC single structure with hardness around 670 Hv. Moreover, the hardness of TiAlVCrMn and TiAlVCrFe HEAs can reach to 800 Hv after annealing at 800°C for 24 hr in vacuum due to the precipitation hardening. It is believed that the goal of medium-low density for the 5-components HEAs can be achieved by increasing the Ti and Al molar ratio in our further study.
1. ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. (1990). Materials Park, OH: ASM International.
2. ASM Handbook, Volume 1: Properties and Selection: Irons, Steels, and High-Performance Alloys. (1990). Materials Park: A S M International.
3. Singh, S., Wanderka, N., Murty, B., Glatzel, U. and Banhart, J. (2011). Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Materialia, 59(1), pp.182-190.
4. Hsu, C., Wang, W., Tang, W., Chen, S. and Yeh, J. (2010). Microstructure and Mechanical Properties of New AlCoxCrFeMo0.5Ni High-Entropy Alloys. Advanced Engineering Materials, 12(1-2), pp.44-49.
5. Chen, Y., Duval, T., Hung, U., Yeh, J. and Shih, H. (2005). Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel. Corrosion Science, 47(9), pp.2257-2279.
6. Chen, Y., Hong, U., Shih, H., Yeh, J. and Duval, T. (2005). Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel. Corrosion Science, 47(11), pp.2679-2699.
7. Yang, X., Zhang, Y. and Liaw, P. (2012). Microstructure and Compressive Properties of NbTiVTaAlx High Entropy Alloys. Procedia Engineering, 36, pp.292-298.
8. Senkov, O., Scott, J., Senkova, S., Miracle, D. and Woodward, C. (2011). Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. Journal of Alloys and Compounds, 509(20), pp.6043-6048.
9. Lilensten, L., Couzinié, J., Perrière, L., Bourgon, J., Emery, N. and Guillot, I. (2014). New structure in refractory high-entropy alloys. Materials Letters, 132, pp.123-125.
10. Yeh, J., Chen, S., Lin, S., Gan, J., Chin, T., Shun, T., Tsau, C. and Chang, S. (2004). Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 6(5), pp.299-303.
11. Cantor, B., Chang, I., Knight, P. and Vincent, A. (2004). Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 375-377, pp.213-218.
12. Ranganathan, S. (2003). Alloyed pleasures: Multimetallic cocktails. CURRENT SCIENCE, 85(10), pp.1404-1406.
13. Yeh, J. (2006). Recent progress in high-entropy alloys. Annales de Chimie Science des Matériaux, 31(6), pp.633-648.
14. Takeuchi, A. and Inoue, A. (2001). Quantitative evaluation of critical cooling rate for metallic glasses. Materials Science and Engineering: A, 304-306, pp.446-451.
15. Miedema, A., de Châtel, P. and de Boer, F. (1980). Cohesion in alloys — fundamentals of a semi-empirical model. Physica B+C, 100(1), pp.1-28.
16. Cahn, R. and Haasen, P. (1996). Physical metallurgy. 4th ed. Amsterdam: North-Holland.
17. Zhang, Y., Zhou, Y., Lin, J., Chen, G. and Liaw, P. (2008). Solid-Solution Phase Formation Rules for Multi-component Alloys. Advanced Engineering Materials, 10(6), pp.534-538.
18. Yang, X. and Zhang, Y. (2012). Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 132(2-3), pp.233-238.
19. Yeh, J. (2011). 高熵合金的發展. 華岡工程學報, (27), pp.1-18.
20. Gaskell, D. (1995). Introduction to the thermodynamics of materials. 3rd ed. Washington: Taylor & Francis, pp.80-84.
21. Swalin, R. (1972). Thermodynamics of solids. 2nd ed. New York: Wiley, pp.35-41.
22. Seitz, F. and Turnbull, D. (1964). Solid State Physics, 16. Burlington: Elsevier, p.404.
23. Tsai, K., Tsai, M. and Yeh, J. (2013). Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 61(13), pp.4887-4897.
24. Dąbrowa, J., Cieślak, G., Stygar, M., Mroczka, K., Berent, K., Kulik, T. and Danielewski, M. (2017). Influence of Cu content on high temperature oxidation behavior of AlCoCrCuxFeNi high entropy alloys (x = 0; 0.5; 1). Intermetallics, 84, pp.52-61.
25. Wu, J., Lin, S., Yeh, J., Chen, S., Huang, Y. and Chen, H. (2006). Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear, 261(5-6), pp.513-519.
26. Yeh, J., Chang, S., Hong, Y., Chen, S. and Lin, S. (2007). Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements. Materials Chemistry and Physics, 103(2007), pp.41–46
27. Murty, B., Yeh, J. and Ranganathan, S. (2014). High-entropy alloys. Oxford, UK: Butterworth-Heinemann.
28. Tong, C., Chen, M., Yeh, J., Lin, S., Chen, S., Shun, T. and Chang, S. (2005). Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A, 36(5), pp.1263-1271.
29. Han, Z., Liu, X., Zhao, S., Shao, Y., Li, J. and Yao, K. (2015). Microstructure, phase stability and mechanical properties of Nb–Ni–Ti–Co–Zr and Nb–Ni–Ti–Co–Zr–Hf high entropy alloys. Progress in Natural Science: Materials International, 25(5), pp.365-369.
30. Cars on a diet : the material and energy impacts of passenger vehicle weight reduction in the U.S. (2011). Massachusetts Institute of Technology.
31. Miller, W., Zhuang, L., Bottema, J., Wittebrood, A., De Smet, P., Haszler, A. and Vieregge, A. (2000). Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A, 280(1), pp.37-49.
32. Senkov, O., Senkova, S., Woodward, C. and Miracle, D. (2013). Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Materialia, 61(5), pp.1545-1557.
33. Senkov, O., Senkova, S., Miracle, D. and Woodward, C. (2013). Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Materials Science and Engineering: A, 565, pp.51-62.
34. Stepanov, N., Yurchenko, N., Shaysultanov, D., Salishchev, G. and Tikhonovsky, M. (2015). Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys. Materials Science and Technology, 31(10), pp.1184-1193.
35. A Novel Light High-Entropy Alloy Al20Be20Fe10Si15Ti35. Available online: http://www.science24.com/paper/19071 (accessed on 25 August 2016).
36. Li, R., Gao, J. and Fan, K. (2010). Study to Microstructure and Mechanical Properties of Mg Containing High Entropy Alloys. Materials Science Forum, 650, pp.265-271.
37. Li, R., Gao, J. and Fan, K. (2011). Microstructure and Mechanical Properties of MgMnAlZnCu High Entropy Alloy Cooling in Three Conditions. Materials Science Forum, 686, pp.235-241.
38. Chen, Y., Tsai, C., Juan, C., Chuang, M., Yeh, J., Chin, T. and Chen, S. (2010). Amorphization of equimolar alloys with HCP elements during mechanical alloying. Journal of Alloys and Compounds, 506(1), pp.210-215.
39. Youssef, K., Zaddach, A., Niu, C., Irving, D. and Koch, C. (2014). A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures. Materials Research Letters, 3(2), pp.95-99.
40. Tsai, M. and Yeh, J. (2014). High-Entropy Alloys: A Critical Review. Materials Research Letters, 2(3), pp.107-123.
41. Senkov, O., Wilks, G., Scott, J. and Miracle, D. (2011). Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 19(5), pp.698-706.
42. Zhang, Y. and Peng, W. (2012). Microstructural control and properties optimization of high-entropy alloys. Procedia Engineering, 27, pp.1169-1178.
43. Zhang, Y., Zhou, Y., Lin, J., Chen, G. and Liaw, P. (2008). Solid-Solution Phase Formation Rules for Multi-component Alloys. Advanced Engineering Materials, 10(6), pp.534-538.
44. GUO, S. and LIU, C. (2011). Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progress in Natural Science: Materials International, 21(6), pp.433-446.
45. Feng, R., Gao, M., Lee, C., Mathes, M., Zuo, T., Chen, S., Hawk, J., Zhang, Y. and Liaw, P. (2016). Design of Light-Weight High-Entropy Alloys. Entropy, 18(9), p.333.
46. Jin, C. (2004). 熱處理. Tai nan shi: Fu wen, p.71.