跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳冠廷
Guan-Ting Chen
論文名稱: 具二維移動軌跡之V型薄膜微熱致動器設計與製備
Design and fabrication of V-shaped thin-film micro-thermal actuators with two-dimensional trajectory
指導教授: 洪銘聰
Ming-Tsung Hung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 143
中文關鍵詞: 微機電系統微致動器
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微熱致動器為利用材料受熱膨脹之特性,使結構產生形變,根據形變的方向,可分為同平面(in-plane)與出平面(out-of-plane)等兩種致動方向,而因幾何結構與製程之限制,鮮少同時具有兩個形變自由度的微致動器,因此,本文以V型樑為主要結構,設計出可於低溫時產生同平面位移、高溫時則轉變為出平面位移的二維移動軌跡微熱致動器。
    本研究以熱為單一驅動力,藉由數值模擬觀察於改變結構樑幾何尺寸後,各方向形變量之變化與趨勢,同時比較與Z型結構樑之差異。由模擬結果歸納出深寬比、傾斜角度兩項主導形變方向的參數,並分析出兩型式結構樑角度之等效關係。於各方面比較後,選擇大深寬比與大角度進行結構圖形設計,並以熱傳導係數較佳之鋁薄膜做為結構之主要材料,同時調整兩種結構樑之排列方式,以克服兩結構於大角度時,耦合樑於出平面方向之水平高低差。
    實驗結果顯示,本文主要探討之V型結構樑於幾何調整後,在溫度160℃時,可得到16.8 μm的最大水平位移與57.2 μm的最大垂直位移,並經由適當設計後,將水平高低差由6 μm減少至2 μm;而Z型結構樑可分別於同平面與出平面得到8.5 μm與72.3 μm之最大位移,並於調整排列方式後,將高低差由8 μm減少至3 μm。


    Micro-thermal actuators deform the structure by heating the material. According to the direction of deformation, the directions of micro-thermal actuators’ actuation can be divided into two parts, in-plane and out-of-plane. Due to the limitations of structure and manufacturing process, microactuators with two degrees of freedom in deformation are rarely used at the same time. Therefore, we use V-shaped as the main structure of the component, designing a two-dimensional movement trajectory micro-thermal actuator that can produce in-plane displacement at low temperature and out-of-plane displacement at high temperature.
    We use heat as a single driving force. Through numerical simulation, the trends of the deformation in each direction after changing the geometric size of the V-shaped structural beam are observed, and compare the difference from the Z-shaped structural beam. Due to the simulation results, the dominating direction of deformation from the parameters of aspect ratio and angle are summarized, and the equivalent relationship between the angles of the two types of structural beams is analyzed. After comparing in all aspects, the large aspect ratio and angle are selected as the basis of the structural graphic design; besides, the aluminum film with a better thermal conductivity is used as the main material of the structure. Meanwhile, the arrangement of the two structural beams is adjusted to overcome the difference of the coupling beam in the out-of-plane direction at large angles.
    The experimental results show that the V-shaped structural beams, which have the maximum horizontal displacement of 16.8 μm and the maximum vertical displacement of 57.2 μm at 160°C, can be obtain. After adjusting the geometry, the difference of the coupling beam in the out-of-plane direction is reduced from 6 μm to 2 μm. However, the Z-shaped structural beam can obtain the maximum displacement of 8.5 μm and 72.3 μm in the in-plane and out-of-plane respectively. By adjusting the arrangement mode, the difference of the coupling beam in the out-of-plane direction is reduced from 8 μm to 3 μm.

    摘要 i Abstract ii 目錄 iv 圖目錄 viii 表目錄 xv 符號說明 xvi 一、 緒論 1 1.1 研究背景 1 1.2 文獻回顧 3 1.3 研究動機與目的 9 1.4 論文架構 10 二、 理論基礎 11 2.1 微致動器 11 2.2 V型結構致動理論 17 2.3 挫曲理論 19 三、 研究方法 22 3.1 研究架構 22 3.2 模擬分析 23 3.2.1 結構選擇 24 3.2.2 模型設定 26 3.2.3 網格收斂分析 29 3.2.4 形變量與軌跡分析 34 3.3 實驗製備 35 3.3.1 材料選擇與製作 37 3.3.2 結構形狀定義 37 3.3.3 結構釋放 40 3.4 實驗量測 43 3.4.1 實驗架設 44 3.4.2 量測方法 46 四、 結果與討論 49 4.1 模擬結果 49 4.1.1 理論與模擬比較 49 4.1.2 幾何結構與形變量之關係 52 4.1.3 V型樑與Z型樑之角度關係 74 4.1.4 耦合樑之水平高低差現象 77 4.2 微熱致動器製備 84 4.2.1 結構圖形 84 4.2.2 結構圖形定義 87 4.2.3 結構釋放 90 4.3 量測結果 94 4.3.1 角度與形變量之關係 95 4.3.2 深寬比與形變量之關係 100 4.3.3 V型樑與Z型樑之等效關係 105 4.3.4 實驗結果探討 110 五、 結論與未來工作 116 參考文獻 118

    [1] W. Riethmuller and W. Benecke, "Thermally excited silicon microactuators," IEEE Transactions on Electron Devices, vol. 35, pp. 758-763, 1988.
    [2] G. K. Fedder and R. T. Howe, "Thermally assembly of polysilicon microstructures," IEEE Micro Electro Mechanical Systems, pp. 63-68 ,1991.
    [3] J. H. Comtois and V. M. Bright, "Applications for surface-micromachined polysilicon thermal actuators and arrays," Elsevier Sensors and Actuators A: Physical, vol. 57, pp. 19-25, 1996.
    [4] J. H. Comtois, M.A. Michalicek, and C.C. Barron, "Characterization of electrothermal actuators and arrays fabricated in a four-level, planarized surface-micromachined polycrystalline silicon process," ScienceDirect Solid State Sensors and Actuators, vol. 2, pp. 769-772, 1997.
    [5] L. Que, J-S. Park, and Y. B. Gianchandani, "Bent-beam electro-thermal actuators for high force applications," IEEE Micro Electro Mechanical Systems, pp. 31-36, 1999.
    [6] C. D. Lott, T. W. McLain, J. N. Harb, and L. L. Howell, " Modeling the thermal behavior of a surface-micromachined linear-displacement thermomechanical microactuator," Elsevier Sensors and Actuators A: Physical, vol. 101, pp.1-2, 2002.
    [7] K. M. Liao, C. C. Chue, and R. Chen, "A novel electro-thermally driven bi-directional microactuator," IEEE Micromechatronics and Human Science, pp.267-274, 2002.
    [8] A. Cao, J. B. Kim, and L. Lin, " Bi-directional electrothermal electromagnetic actuators," IOP Journal of Micromechanics and Microengineering, vol. 17, pp. 975-982, 2007.
    [9] Y. Li, D. Psychogiou, S. Kühne, J. Hesselbarth, C. Hafner, and C. Hierold, "Large Stroke Staggered Vertical Comb-Drive Actuator for the Application of a Millimeter-Wave Tunable Phase Shifter," IEEE Journal of Microelectromechanical Systems, vol. 22, pp. 962-975, 2013.
    [10] L. J. Hornbeck and Texas Instruments Inc., "Digital Light Processing for high-brightness, high-resolution applications," SPIE, vol. 3013, pp. 27-40, 1997.
    [11] S. Akhbari, F. Sammoura, B. Eovino, C. Yang, and L. Lin, "Bimorph Piezoelectric Micromachined Ultrasonic Transducers," IEEE Journal of Microelectromechanical Systems, vol. 25 pp. 326-336, 2016.
    [12] X. Zhang, Y. Wu, X. Miao, C. Zhang, and G. Ding, "An electro-thermal SU-8 cantilever micro actuator based on bimorph effect," IEEE Micro Engineered and Molecular Systems, pp. 362-365, 2010.
    [13] G. Lin, C. J. Kim, S. Konishi, and H. Fujita, "Design, fabrication, and testing of a C-shape actuator," IEEE Proceedings of the International Solid-State Sensors and Actuators Conference, vol. 2, pp. 416-419, 1995.
    [14] T. Seki, M. Sakata, T. Nakajima, and M. Matsumoto, "Thermal buckling actuator for micro relays," ScienceDirect Solid State Sensors and Actuators, vol. 2, pp. 1153-1156, 1997.
    [15] P. I. Yeh, W. C. Chen, C-F. Hu, and W. Fang, "A single-layer step-bridge for out-of-plane thermal actuator," IEEE Solid-State Sensors, Actuators and Microsystems, pp. 2175-2178, 2007.
    [16] Q. A. Huang and N. K. S. Lee, "Analysis and design of polysilicon thermal flexure actuator," IEEE Journal of Micromechanics and Microengineering, pp. 64-70, 1999.
    [17] P. Lerch, C. K. Slimane, B. Romanowicz, and P. Renaud, "Modelization and characterization of asymmetrical thermal micro-actuators," IEEE Journal of Micromechanics and Microengineering, pp. 134-137, 1996.
    [18] S. A. Sheikh and T. Shanmuganantham, "A novel design microgripper based on electrothermal expansion principle," IEEE Computer Communication and Informatics, 2014.
    [19] A. M. H. Kwan, S. Song, X. Lu, L. Lu, … O. Tabata, " Improved Designs for an Electrothermal In-Plane Microactuator, " IEEE Journal of Microelectromechanical Systems, vol. 21, pp.586-595, 2012.
    [20] C. Guan and Y. Zhu, "An electrothermal microactuator with Z-shaped beams," IEEE Journal of Micromechanics and Microengineering, vol. 20, 2010.
    [21] N. Lobontiu and E. Garcia, "Mechanics of Microelectromechanical Systems," Kluwer Academic Publishers, New York, 2004.
    [22] L. Que, J.S. Park, and Y. B. Gianchandani, "Bent-Beam Electrothermal Actuators—Part I: Single Beam and Cascaded Devices," IEEE Journal of Micromechanics and Microengineering, vol. 10, pp.247-254, 2001.
    [23] F. P. Beer, E.R. Johnston, J.T. Dewolf, and D. F. Mazurek, " Mechanics of Materials," McGraw-Hill, New York, 2012.
    [24] G. Yan, P. C. H. Chan, I. M. Hsing, R. K. Sharma, J. K. O. Sin, and Y. Wang, "A improved TMAH Si-etching solution without attaching exposed aluminum," Elsevier Sensors and Actuators A: Physical, vol 89, no. 2, pp. 135-141,2001.
    [25] K. Tokoro, D. Uchikawa, M. Shikida, and K. Sato, "Anisotropic etching properties of silicon in KOH and TMAH solutions," IEEE Micromechatronics and Human Science, pp. 65-70, 1998.

    QR CODE
    :::