| 研究生: |
黃柏詠 Bo-Yong Huang |
|---|---|
| 論文名稱: |
單光子放射顯微鏡系統之校正與成像模型建立 System Calibration and Imaging Model Construction of Single Photon Emission Microscope |
| 指導教授: |
陳怡君
Yi-Chun Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 單光子放射顯微鏡 、幾何校正 、成像模型 |
| 外文關鍵詞: | SPEM, Geometric calibration, imaging model |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了提高重建影像的品質,本論文利用單光子放射顯微鏡系統(SPEM)作為影像擷取系統,此系統為一種高空間解析度的單光子放射電腦斷層掃描系統(SPECT),當中包括針孔式準直儀、碘化銫閃爍晶石、光影像縮倍管(DM tube)與電子增益電荷耦合元件(EMCCD)。
在影像重建的過程中,最重要的一步為建立影像系統矩陣(H矩陣),而為了獲得良好的系統矩陣,本論文利用系統幾何校正(System Geometric Calibration)與成像模型建立(Imaging Model Construction)來得到SPEM的影像系統矩陣。在幾何校正實驗中,利用三個點射源作各角度之投影影像,利用影像之投影重心找出在偵測器座標系中針孔及旋轉軸所在位置,並藉由針孔及旋轉軸所在位置與格點掃描實驗之實驗結果建立成像模型,此成像模型包含通量模型與寬度模型,最後利用此成像模型便可得到視域空間中的影像系統矩陣。
在影像重建實驗中以Tc-99m藥劑注入假體中,以SPEM擷取各角度之投影影像,並將影像系統矩陣與投影影像代入序列子集期望值最大化演算法(OSEM)中,最後重建出三維物體影像。
This study utilizes a single photon emission microscope (SPEM), which is a high spatial resolution version of single photon emission computed tomography (SPECT) system, to acquire projection images for tomographic reconstructions. The imaging system consists of a 7-pinhole collimator, a thallium activated cesium iodide [CsI(Tl)] columnar scintillator, a de-magnifier tube (DM-tube) and an electron multiplying charge-coupled device (EMCCD).
To obtain high quality images, an accurate imaging system matrix, also called H matrix, is indispensable in the image reconstruction process. Two procedures are implemented to build the H matrix of SPEM, including the system geometric calibration and imaging model construction. A three-point phantom filled with Tc-99m pertechnetate solution is rotated to acquire 64 projections. The projection centroids are utilized to estimate the geometric parameters of SPEM, such as the axis of rotation (AOR) and pinhole positions. A grid-scan experiment with a single point source is performed to provide point response functions for constructing the imaging model, including the flux and width models. A complete H matrix is then generated according to the geometric parameters and imaging models.
Projections of the three-point phantom and resolution phantom are acquired to evaluate the system performance. The reconstructed images demonstrate the feasibility of the system calibration procedures. Renovations of the instrument shielding is in progress to allow proper object positioning and achieving full resolution capability of SPEM.
參考文獻
[1] S. R. Cherry and S. S. Gambhir, “Use of positron emission tomography in animal research,”ILAR Journal, vol. 42, no. 3, pp. 219-232, 2001.
[2] Available:https://zh.wikipedia.org/wiki/X%E5%B0%84%E7%BA%BF
[3] M. N. Wernick and J. N. Aarsvold, Emission Tomography: The Fundamentals ofPET and SPECT, Elsevier Academic Press, London, 2004.
[4] M. A. D. Reis, J. Mejia, I. R. Batista, M. R. F. F. D. Barboza, and S. A. Nogueira, et al., “SPEM: A state-of-the-art instrument for high resolution molecular imaging of small animal organs”SciELO Einstein (São Paulo), vol. 10, no. 2, pp. 209-215, 2012.
[5] J. Mejia, M.A. Reis, A.C.C. Miranda, I.R. Batista, andM.R.F.Barboza, et al.,“Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs”SciELOBrazilian Journal of Medical and Biological Research, vol. 46, no. 11, pp. 936-942, 2013.
[6] Available: http://nsspi.tamu.edu/nssep/courses/basic-radiation-detection/semiconductor-detectors/introduction/introduction
[7] T. E. Schlesinger, J. E. Toney, H. Yoon, E. Y. Lee, and B. A. Brunett, et al., “Cadmium zinc telluride and its use as a nuclear radiation detector material”ElsevierMaterials Science and Engineering: R: Reports, vol. 32, no. 4-5, pp. 103-189, 2001.
[8] A.P. Dhanasopon, C.S. Levin, A.M.K. Foudray, P.D. Olcott, J.A. Talcott, and F. Habte, “Scintillation crystal design features for a miniature gamma ray camera”IEEE Nuclear Science Symposium Conference Record, vol. 5 pp. 1967-1971, 2003.
[9] M. A. kupinski and H. H. Barrett, Small-Animal SPECT Imaging, Springer, New York, 2005.
[10] C. Fiorini, A. Longoni, F. Perotti, C. Labanti, P. Lechner, and L. Strüder, “Gamma ray spectroscopy with CsI(Tl) scintillator coupled to silicon drift chamber”IEEE Transactions on Nuclear Science, vol. 44, no. 6, pp. 2553-2560, 1997.
[11] Available: https://www.hamamatsu.com/resources/pdf/etd/H8500_H10966_TPMH1327E.pdf
[12] Available: http://www.ysctech.com/digital-microscope-CCD-camera-info.html
[13] Available: http://hamamatsu.magnet.fsu.edu/articles/emccds.html
[14] Available: http://www.teo.com.tw/prodDetail_print.asp?id=733
[15] L. J. Meng, N. H. Clinthorne, S. Skinner, R. V. Hay, and M. Gross, “Design and feasibility study of a single photon emission microscope system for small animal I-125 imaging”IEEE Transactions on Nuclear Science, vol. 53, no. 3, pp. 1168-1178, 2006.
[16] L. J. Meng, “An intensified EMCCD camera for low energy gamma ray imaging applications” IEEE Transactions on Nuclear Science, vol. 53, no. 4, pp.2376-2384, 2006.
[17] H. H. Barrett, and K. J. Myers, Foundations of Image Science, Wiley Interscience, Hoboken, N. J., 2004.
[18] M. W. Lee, and Y. C. Chen, “Rapid construction of pinhole SPECT system matrices by distance-weighted Gaussian interpolation method combined with geometric parameter estimations” Elsevier Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 737, pp. 122-134, 2014.
[19] Y. Wang, and B. M. W.Tsui, “Pinhole SPECT with different data acquisition geometries:usefulness of unified projection operators in homogeneous coordinates”IEEE Transactions on Medical Imaging, vol. 26, no. 3, pp. 298-308, 2007.
[20] F. V. D. Have, B. Vastenhouw, M. Rentmeester, and F. J. Beekman, “System calibration and statistical image reconstruction for ultra-high resolution stationary pinhole SPECT”IEEE Transactions on Medical Imaging, vol. 27, no. 7, pp. 960-971, 2008.
[21] L. A. Shepp, and Y. Vardi, “Maximum likelihood reconstruction for emission tomography”IEEE Transactions on Medical Imaging, vol. 1, no. 2, pp. 113-122, 1982.
[22] H. M. Hudson, and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data” IEEE Transactions on Medical Imaging, vol. 13, no. 4, pp. 601-609, 1994.