| 研究生: |
陳卓仁 Gho-Jen Chen |
|---|---|
| 論文名稱: |
醫療載具的單眼視覺行人偵測 Monocular-vision Pedestrian Detection for Medical Vehicles |
| 指導教授: |
曾定章
Din-Chang Tseng 鄔蜀威 Shu-Wei Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生物醫學工程研究所 Graduate Institute of Biomedical Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 距離轉換 、行人偵測 、梯度方向分佈圖 |
| 外文關鍵詞: | pedestrian detection, distance transform, histograms of oriented gradients |
| 相關次數: | 點閱:35 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著交通工具使用的頻繁與流行,交通事故成為廣受國人注意的安全議題。交通事故中若波及行人,不論對駕駛人或行人都將造成相當嚴重的損傷。本研究中針對醫療載具;例如,救護用車、殘障專用車輛、輪椅、輔助行動工具等。這類載具的駕駛人需要投注更多專注力在駕駛或是本身注意能力、反應能力較一般人弱勢,我們在本研究中提出一個使用單眼視覺的行人偵測系統,並應用於複雜的校園、街道環境中,以避免發生與行人碰撞的事故。
在本論文中,我們以梯度方向分佈圖 (Histograms of oriented gradients, HOG) 作為表達行人特徵的方式,行人分類學習步驟中,我們引入支援向量學習機 (Support Vector Machine, SVM) 作為學習分類器。基於單眼視覺的行人偵測需要產生大量的候選行人視窗供給分類器作判別,然而,HOG 特徵是以累積視窗內像素點各方向的邊強度取得,當候選視窗數量眾多,累積所需得執行時間將會大幅升高,本研究使用行人偵測帶 (pedestrian detection strip, PDS) 作為第一步蒐尋包含行人位置的 ROI 區塊,再引入距離轉換 (distance transform, DT) 模板作第一步的候選行人視窗篩選,通過初步篩選後的視窗再交給 SVM 作最後的判定。
在行人偵測的結果方面,在巷弄間複雜的背景、校園內行人數多的情況下、以及光照不同的情形下,交給 SVM 分類的行人視窗辨識效果都有 94% 以上的正確率,而在一般的情況下影格中出現行人的偵測率也約有 80% 以上,而每個影格中出現 false positive 的偵測錯誤也指有 0.3 個左右。
With frequent and popular use of transport, traffic accidents become great issues for people to pay attention. If there were pedestrians injured in an accident, whether drivers or pedestrians will cause very serious loss. In this study, we pay more attention to some medical vehicles, such as ambulance, disabled vehicle, wheelchair and action assistance tools. For those vehicles, the drivers should pay more attention in the driving or the drivers would have weaker reaction ability than a normal person. We proposed a pedestrian detection system using monocular vision. To avoid collision accident, we applied our system to some complex environment, such as campus and street situation.
In this paper, we use Histograms of oriented gradients (HOG) as a way of pedestrian characteristics expression. We introduce the support vector machine (SVM) for pedestrian classification learning. The classifier training has to generate many candidate of pedestrian window. However, HOG features are accumulated by each direction of edge intensity. It will cause the time of process rising while the number of candidate become larger. The research employs the pedestrian detection strip (PDS) as the first seeking-step of interesting region. Then we using distance transform (DT) template as selection function to sift the candidate windows of pedestrian out. Finally we constructed the HOG feature of each window and used the SVM classifier for final judgment. In the results, we have More than 94% of accuracy with SVM classifier of pedestrian detection. Other side, our detection rate of pedestrian is above 80% and the detection error of false positive in each frame is mean about 0.3 / frame.
[1] Agarwal, S., A. Awan, and D. Roth, ''Learning to detect objects in images via a sparse, part-based representation,'' IEEE Trans. Pattern Analysis and Machine Intelligence, vol.26, no.11, pp.1475-1490, 2004.
[2] Ahonen, T., A. Hadid, and M. Pietikinen, ''Face recognition with local binary patterns,'' in proc. 8th European Conf. on Computer Vision, Prague, Czech Republic, May.11-14, 2004, pp.469-481.
[3] Ahonen, T., A. Hadid, and M. Pietikinen, ''Face description with local binary patterns: application to face recognition,'' IEEE Trans. Pattern Analysis and Machine Intelligence, vol.28, no.12, pp.2037-3041, 2006.
[4] Alonso, I. P., D. F. Llorca, and M. Á . Sotelo, ''Combination of feature extraction methods for SVM pedestrian detection,'' IEEE Trans. Intelligent Transportation System, vol.8, no.2, pp.292-307, 2007.
[5] An, T.-K. and M.-H. Kim, ''A new diverse AdaBoost classifier,'' in Proc. Int. Conf. Artificial Intelligence and Computational Intelligence, Sanya, China, Oct.23-24, 2010, pp.359-363.
[6] Bertozzi, M., A. Broggi, M. Del Rose, M. Felisa, A. Rakotomamonjy, and F. Suard, ''A pedestrian detector using histograms of oriented gradients and a support vector machine classifier,'' in Proc. IEEE Conf. Intelligent Transportation Systems, Seattle, WA., Sep.30-Oct.3, 2007, pp.143-148.
[7] Boult, T.E., R. Micheals, X. Gao, P. Lewis, C. Power, W. Yin, and A. Erkan, “Frame-rate omnidirectional surveillance and tracking of camouflaged and occluded targets,” in Proc. 2nd IEEE Workshop on Visual Surveillance, Fort Collins, CO, Jun.25-27, 1999, pp.48-55.
[8] Brémond, F. and M. Thonnat, “Tracking multiple nonrigid objects in video sequences,” IEEE Trans. on Circuits and System for Video Technology, vol.8, no.5, pp.585-591, Sep. 1998.
[9] Chen, C. H. and D. L. Yang, "Fast algorithm and its systolic realization for distance transformation," IEE Proc. Computers and Digital Techniques, vol.143, no.3, pp.168-173, 1996.
[10] Cheng, Y., ''Mean shift, mode seeking, and clustering,'' IEEE Trans. Pattern Analysis and Machine Intelligence, vol.17, no.8, pp.790-799, 1995.
[11] Cutler, R. and L. Davis, “View-based detection and analysis of periodic motion,” in Proc. 14th IEEE Int’l Conf. on Pattern Recognition, Brisbane, Australia, Aug.16-20, 1998, pp.495-500.
[12] Dahua, L. and T. Xiaoou, ''Quality-driven face occlusion detection and recovery,'' in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Minneapolis, Minnesota, June 18-23, 2007, pp.1-7.
[13] Dalad, N. and B. Triggs, ''Histograms of oriented gradients for human detection,'' in Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, San Diego, CA, June 20-26, 2005, pp.886-893.
[14] Enzweiler, M., P. Kanter, and D.M. Gavrila, ''Monocular pedestrian recognition using motion parallax,'' in Proc. IEEE Conf. Intelligent Vehicles Symp., Eindhoven, The Netherlands, June 4-6, 2008, pp.792-797.
[15] Enzweiler, M. and D.M. Gavrila, ''Monocular pedestrian detection: survey and experiments,'' IEEE Trans. Pattern Analysis and Machine Intelligence, vol.31, no.12, pp.2179-2195, 2008.
[16] He, D.-C. and L. Wang, ''Texture unit, texture spectrum, and texture analysis,'' IEEE Trans. Geoscience and Remote Sensing, vol.28, no.4, pp.509-512, 1990.
[17] Heikkilä, J. and O. Silvén, “A real-time system for monitoring of cyclists and pedestrians,” in Proc. 2nd IEEE Workshop on Visual Surveillance, Fort Collins, CO, Jun.25-27, 1999, pp.74-81.
[18] Kobayashi, T., A. Hidaka, and T. Kurita, ''Selection of histograms of oriented gradients features for pedestrian detection,'' in Proc.14th Int. Conf. Neural Information Processing, Kitakyushu, Japan, Nov.13-16, 2007, pp.598-607.
[19] Leibe, B., E. Seemann, and B. Schiele, ''Pedestrian detection in crowded scenes,'' in Proc. IEEE Conf. Computer Vision and Pattern Recognition, San Diego, CA, June 20-26, 2005, pp.878-885.
[20] Ma G., D. Muller, S.-B. park, S. Muller-Schneiders, and A. Kummert, ''pedestrian detection using a single monochrome camera,'' IET Intelligent Transport Systems, vol.3, pp. 42-56, March 2009.
[21] Mohan, A., C. Papageorgiou, and T. Poggio, ''Example-based object detection in images by components,'' IEEE Trans. Pattern Analysis and Machine Intelligence, vol.23, no.4 pp.349-361, 2001.
[22] Oliver, N. M., B. Rosario, and A. P. Pentland, “A bayesian computer vision system for modeling human interactions,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.22, no.8, pp.831-843, Aug. 2000.
[23] Rehg, J. M., M. Loughlin and K. Waters, “Vision for a smart kiosk,” IEEE Conf. on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, Jun.17-19, 1997, pp.690-696.
[24] Sechidis, L. A, P. Patias and V. Tsioukas, “Low-level tracking of multiple objects,” in Proc. Workshop on Non-rigid Motion, Nov.1994, pp.77-82.
[25] Suard, F., A. Rakotomamonjy, A. Bensrhair, and A. Broggi, ''Pedestrian detection using infrared images and histograms of oriented gradients,'' in Proc. IEEE Conf. Intelligent Vehicles Symp., Tokyo, Japan, June 13-15, 2006, pp.206-212.
[26] Tanaka, K., T. Kurita, F. Meyer, L. Berthouze, and T. Kawabe, ''Stepwise feature selection by cross validation for egg-based brain computer Interface,'' in Proc. Int. Joint Conf. on Neural Networks, Vancouver, Canada, July 16-21, 2006, pp.9422–9427.
[27] Tou, J. T. and R. C. Gonazalez, Pattern Recognition Principles, Addison-Wesley, Canada, 1974, Ch.3, pp.90-93.
[28] Vapnik, V.N., The Nature of Statistical Learning Theory, Springer, Berlin, 1995.
[29] Viola, P. and M. J. Jones, "Robust real-time object detection," Int. Journal of Computer Vision, vol.57, no.2, pp.37-154, 2001.
[30] Viola, P., M. J. Jones, and D. Snow, "Detecting pedestrians usin patterns of motion and appearance," in Proc. IEEE Int. Conf. Computer Vision, Nice, France, Oct.13-16, 2003, pp.734-741.
[31] Viola, P. and M. J. Jones, "Robust real-time face detection," Int. Journal of Computer Vision, vol.57 no.2, pp.137-154, 2004.
[32] Wang, X., T. X. Han, and S. Yan, "An HOG-LBP human detector with partial occlusion handling," in proc. IEEE 12th Int. Conf. Computer Vision, Kyoto, Japan, Sep.29-Oct.2, 2009, pp.32-39.
[33] Wren, C. R., A. Azarbayejani, T. Darrell, and A.P. Pentland, “Pfinder: real-time tracking of the human body,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.19, no.7, pp.780-785, July 1997.
[34] Wu, B. and R. Nevatia, "Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors," in Proc. IEEE Int. Conf. on Computer Vision, Beijing, China, Oct.17-20, 2005, pp.90-97.
[35] Wu, B. and R. Nevatia, "Tracking of multiple, partially occluded humans based on static body part detection," in Proc. IEEE Conf. Computer Vision and Pattern Recognition, New York, NY, June 17-22, 2006, pp.951-958.
[36] Zhu, Q., A. Shai, M.-C. Yeh, and K.-T. Cheng, "Fast human detection using a cascade of histograms of oriented gradients," in Proc. IEEE Conf. Computer Vision and Pattern Recognition, New York, NY, June 17-22, 2006, pp.1491-1498.