跳到主要內容

簡易檢索 / 詳目顯示

研究生: 靜宜漢得遜
Jing-Yi Hender-son
論文名稱: 利用ZTF資料推導銀河系內造父變星的gri波段週光關係
Deriving the gri-band Period-Luminosity Relation for Galactic Cepheids with Zwicky Transient Facility Data
指導教授: 饒兆聰
Chow-Choong Ngeow
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 64
中文關鍵詞: 週光關係造父變星
外文關鍵詞: Period-Luminosity Relation, Cepheids
相關次數: 點閱:24下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 造父變星是宇宙學中重要的距離指標,其週光關係為宇宙中距離量測的重要方法之一。近期及未來的巡天計畫大多採用Sloan photometric system (ugriz)觀測,代表性計畫為LSST(Vera C. Rubin Observatory Legacy Survey of Space and Time),因此我們主要分析gri波段的銀河系內造父變星,為LSST的觀測做先驅。目標數據主要來自Gaia和Zwicky Transient Facility (ZTF),由Gaia提供的視差作為距離的依據,而ZTF則提供觀測亮度作為光變曲線和週期的來源。我們使用multiband Lomb-Scargle Periodogram推算週期,並藉由傅立葉函數取得平均亮度,經過距離與消光的處理得到絕對星等,再以線性擬合求得週光關係。我們最終分析的目標包含Classical Cepheids fundamental mode (F) 419顆和first-overtone mode (1O) 295顆,Anomalous Cepheids F 9顆和1O 12顆,Type II Cepheids 205顆,並取得其於gri波段的period-luminosity relation和period-Wesenheit relation。


    Cepheids are important distance indicators in cosmology, and their period-luminosity relation is one of the important methods for measuring distance in the universe. Most of the near-future sky surveys use the Sloan photometric system (ugriz) for observations, and one of representative projects is LSST (Vera C. Rubin Observatory Legacy Survey of Space and Time). Therefore, we analyzed the gri-band Cepheids in the Milky Way to serve as a pioneer work for LSST observations. The data mainly comes from Gaia and the Zwicky Transient Facility (ZTF). The parallax provided by Gaia was used as the basis for distance, and ZTF provides apparent magnitudes and periods. We used multiband Lomb-Scargle Periodogram to estimate periods, and used Fourier expansion to obtain mean apparent magnitudes. We then obtained absolute magnitudes, and applied linear regression to obtain the period-luminosity relations. Our final samples included 419 fundamental mode (F) and 295 first-overtone mode (1O) Classical Cepheids, 9 F and 12 1O Anomalous Cepheids, and 205 Type II Cepheids. We have also obtained their gri-band period-luminosity relations and period-Wesenheit relations.

    學位論文授權書 i 指導教授推薦書 iii 口試委員審定書 v 摘要 vii Abstract ix 目錄xi 圖目錄xiii 表目錄xv 第一章 緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 造父變星 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 週光關係 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 論文簡述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 第二章 目標和數據分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 目標篩選 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Gaia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 ZTF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 週期 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 光變曲線與平均亮度 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 PL/PW fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 第三章 結果與討論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1 DCEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 ACEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 T2CEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4 討論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4.1 PL關係於gri波段呈現的趨勢 . . . . . . . . . . . . . . . . . . . . . . 16 3.4.2 場星與球狀星團的比較 . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4.3 距離誤差篩選範圍的影響 . . . . . . . . . . . . . . . . . . . . . . . 19 3.4.4 距離的驗證 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 第四章 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 附錄A 目標清單. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    Bailer-Jones C., Rybizki J., Fouesneau M., Demleitner M., Andrae R., 2021, The Astronomical Journal, 161, 147
    Bellm E. C., et al., 2018, Publications of the Astronomical Society of the Pacific, 131, 018002
    Green G. M., Schlafly E., Zucker C., Speagle J. S., Finkbeiner D., 2019, The Astrophysical Journal, 887, 93
    Leavitt H. S., 1907, Annals of Harvard College Observatory, 60, 87
    Leavitt H. S., Pickering E. C., 1912, Harvard College Observatory Circular, vol. 173, pp. 1-3, 173, 1
    Madore B. F., 1982, Astrophysical Journal, Part 1, vol. 253, Feb. 15, 1982, p. 575-579. Research supported by the Natural Sciences and Engineering Research Council of Canada, University of Toronto, and Science Research Council of England., 253, 575
    Madore B. F., Freedman W. L., 1991, Publications of the Astronomical Society of the Pacific, 103, 933
    Ngeow C.-C., et al., 2021, The Astronomical Journal, 162, 63
    Ngeow C.-C., Bhardwaj A., Henderson J.-Y., Graham M. J., Laher R. R., Medford M. S., Purdum J., Rusholme B., 2022a, The Astronomical Journal, 164, 154
    Ngeow C.-C., Bhardwaj A., Graham M. J., Groom S. L., Masci F. J., Riddle R., 2022b, The Astronomical Journal, 164, 191
    Ripepi V., et al., 2023, Astronomy & Astrophysics, 674, A17
    Vallenari A., et al., 2023, Astronomy & Astrophysics, 674, A1
    VanderPlas J. T., Ivezic Z., 2015, The Astrophysical Journal, 812, 18

    QR CODE
    :::