| 研究生: |
林成之 Chen-chih Lin |
|---|---|
| 論文名稱: |
有機染料分子薄膜之光電特性研究 Research on optical and electrical properties of organic dye molecule thin films |
| 指導教授: |
張瑞芬
Jui-Fen Chang 李正中 Cheng-Chung Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 染料分子薄膜 、J-聚集 、強耦合 |
| 外文關鍵詞: | organic dye molecule thin films, J-aggregate, strong coupling |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要研究有機染料分子薄膜之結構、光學吸收特性、與電致發光特性,並進一步利用此薄膜設計強耦合共振腔元件,模擬Polariton能態的現象。本實驗使用DEDOC 染料分子作為實驗材料,並將此材料製作成具有J-aggregate(J-聚集)分子排列的高吸收薄膜。我們透過疊代運算法擬合薄膜的穿透與反射實驗頻譜,在最佳化的擬合條件下,可準確擬合出多層堆疊後之總厚度,相當吻合原子力顯微鏡的量測厚度,並得到峰值吸收常數α高達106/cm。接著,利用OLED架構研究DEDOC J-aggregate花青染料的電致發光特性,並分析在不同製程條件下,染料分子薄膜排列之均勻度對外部量子轉換效率的影響。透過排列最佳的Layer-by-layer製程,可得到最佳外部量子轉換效率約為5×10-3%。
接著,我們進一步將染料分子薄膜置於共振腔系統中,模擬產生強耦合模態之現象。在此共振腔中,利用一個紅光OLED系統做為主要激發Polariton能態發光的光源,而此染料分子薄膜作為產生Polariton能態的介質。我們利用了Hamiltonian的擴增矩陣模型與多層膜理論,來預測激子與光子在共振腔中的強耦合行為。經由模擬電場分佈、反射頻譜、Polariton色散曲線,可得到最佳化的強耦合共振腔設計。在實作上,選用 TPB3與DCJTB共摻雜系統作為紅光OLED系統,探討其在滿足最佳化共振腔設計下,元件的發光波長、光強與發光穩定性。目前的材料研究與共振腔設計,可作為未來實現Polariton電致發光的重要前驅研究。
In this thesis we investigated the structure, optical absorption, and electroluminescence of organic dye molecule thin films, and further employed the film to design the strongly-coupled microcavity devices and to simulate the phenomena of polariton states. We used the DEDOC dye molecule to produce a highly-absorbing J-aggregate film. We calculated the film thickness by iteratively fitting the R and T spectra. The optimal fitting yields the total thickness of assembled layers, which is well matched with the AFM measurements. The peak absorption coefficient α was extracted to be 10 6/cm. Next, we investigated the electroluminescence of DEDOC J-aggregate films based on OLED configuration, and analyzed the relation between the EQE and morphology of films made from different processes. With layer-by-layer assembly, the best EQE of 5×10-3% was achieved. We then integrated the DEDOC J-aggregate films into microcavities and simulated the strongly-coupled phenomena. In such a microcavity, we used a red light OLED system as a pumping source for polaritonic luminescence, and DEDOC J-aggregate films as the medium to produce polariton states. We used the Hamiltonian matrix model and multilayer matrix model to predict the exciton-photon coupling in the microcavity. By simulating the electrical field distribution, reflectivity spectrum, and dispersion of polariton states, we obtained the optimal design of strongly-coupled microcavity. In experiments, we chose the TPB3 and DCJTB co-doping red light OLED system, and studied the emitting wavelength, light intensity, and stability under the condition of the best microcavity design. The current study on materials and microcavity design serves an important preliminary research for realization of polariton electroluminescence in the future.
1. Würthner, F., T.E. Kaiser, and C.R. Saha‐Möller, J‐Aggregates: From Serendipitous Discovery to Supramolecular Engineering of Functional Dye Materials. Angewandte Chemie International Edition, 2011. 50(15): p. 3376-3410.
2. Connolly, L.G., et al., Strong coupling in high-finesse organic semiconductor microcavities. Applied Physics Letters, 2003. 83(26): p. 5377.
3. Tani, T., et al., Local reflection micro-spectroscopy of excitons in fibril-shaped molecular J-aggregates prepared in PVA thin films. Journal of Luminescence, 2003. 102-103: p. 27-33.
4. Kasprzak, J., et al., Bose–Einstein condensation of exciton polaritons. Nature, 2006. 443(7110): p. 409-414.
5. Savona, V., et al., Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes. Solid State Communications, 1995. 93(9): p. 733-739.
6. Wei, H.S., et al., Adjustable exciton-photon coupling with giant Rabi-splitting using layer-by-layer J-aggregate thin films in all-metal mirror microcavities. Optics Express, 2013. 21(18): p. 21365-21373.
7. Pradeesh, K., J. Baumberg, and G.V. Prakash, Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity. Optics express, 2009. 17(24): p. 22171-22178.
8. Schwartz, T., et al., Polariton dynamics under strong light-molecule coupling. Chemphyschem, 2013. 14(1): p. 125-31.
9. Slootsky, M., et al. Formation of hybrid polaritons in an organic-inorganic microcavity at room temperature. in CLEO: QELS_Fundamental Science. 2013. Optical Society of America.
10. Tischler, J., et al., Strong Coupling in a Microcavity LED. Physical Review Letters, 2005. 95(3).
11. Rossbach, G., et al., Impact of saturation on the polariton renormalization in III-nitride based planar microcavities. Physical Review B, 2013. 88(16).
12. Daskalakis, K.S., et al., All-dielectric GaN microcavity: Strong coupling and lasing at room temperature. Applied Physics Letters, 2013. 102(10): p. 101113.
13. Gibbs, H.M., G. Khitrova, and S.W. Koch, Exciton–polariton light–semiconductor coupling effects. Nature Photonics, 2011. 5(5): p. 273-273.
14. Chemla, D.S., Nonlinear optical properties of organic molecules and crystals. Vol. 1. 2012: Elsevier.
15. Pope, M. and C. Swenberg, Electronic processes in organic crystals and polymers, 1999. Cocchi, M. & Virgili, D. & Giro, G. & Fattori, V. & Marco, PD & Kalinowski, J. & Shirota, Y., Appl. Phys. Lett, 2002. 80: p. 2401.
16. Tani, T., et al., Microscopic exciton properties of fibril-shaped molecular J-aggregates prepared in ultra-thin polymer films. Journal of Luminescence, 2004. 107(1-4): p. 339-346.
17. Tani, T., et al., Anisotropic observation of absorption and fluorescence transition dipoles in exciton–polariton properties of PIC J-aggregates. Journal of Luminescence, 2007. 122-123: p. 244-246.
18. Oda, M., et al., Strong exciton-photon coupling and its polarization dependence in a metal-mirror microcavity with oriented PIC J-aggregates. physica status solidi (c), 2009. 6(1): p. 288-291.
19. Oda, M., et al., Fabrication, characterization and its local reflection properties of a metal-mirror microcavity with high concentrated PIC J-aggregates. Physics Procedia, 2010. 3(4): p. 1615-1620.
20. Bradley, M.S., J.R. Tischler, and V. Bulović, Layer‐by‐Layer J‐Aggregate Thin Films with a Peak Absorption Constant of 106 cm–1. Advanced Materials, 2005. 17(15): p. 1881-1886.
21. Coles, D.M., et al., Imaging the polariton relaxation bottleneck in strongly coupled organic semiconductor microcavities. Physical Review B, 2013. 88(12).
22. Christogiannis, N., et al., Characterizing the Electroluminescence Emission from a Strongly Coupled Organic Semiconductor Microcavity LED. Advanced Optical Materials, 2013. 1(7): p. 503-509.
23. Virgili, T., et al., Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity. Physical Review B, 2011. 83(24).
24. Somaschi, N., et al., Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities. Applied Physics Letters, 2011. 99(14): p. 143303.
25. Coles, D.M., et al., Vibrationally Assisted Polariton-Relaxation Processes in Strongly Coupled Organic-Semiconductor Microcavities. Advanced Functional Materials, 2011. 21(19): p. 3691-3696.
26. Coles, D.M., et al., Temperature dependence of the upper-branch polariton population in an organic semiconductor microcavity. Physical Review B, 2011. 84(20).
27. Chovan, J., et al., Controlling the interactions between polaritons and molecular vibrations in strongly coupled organic semiconductor microcavities. Physical Review B, 2008. 78(4).
28. Wenus, J., et al., Optical strong coupling in microcavities containing J-aggregates absorbing in near-infrared spectral range. Organic Electronics, 2007. 8(2-3): p. 120-126.
29. Ceccarelli, S., et al., Temperature dependent polariton emission from strongly coupled organic semiconductor microcavities. Superlattices and Microstructures, 2007. 41(5-6): p. 289-292.
30. Lidzey, D.G., et al., Hybrid polaritons in strongly coupled microcavities: experiments and models. Journal of Luminescence, 2004. 110(4): p. 347-353.
31. Krizhanovskii, D.N., et al., Photoluminescence emission and Raman scattering polarization in birefringent organic microcavities in the strong coupling regime. Journal of Applied Physics, 2003. 93(9): p. 5003.
32. Akselrod, G.M., et al., Lasing through a strongly-coupled mode by intra-cavity pumping. Opt Express, 2013. 21(10): p. 12122-8.
33. Bradley, M.S. and V. Bulović, Intracavity optical pumping of J-aggregate microcavity exciton polaritons. Physical Review B, 2010. 82(3).
34. Akselrod, G.M., et al., Exciton-exciton annihilation in organic polariton microcavities. Physical Review B, 2010. 82(11).
35. 李正中, 薄膜光學與鍍膜技術 (第七版). 2012, 新北市: 藝軒圖書出版社.
36. Teich, M.C. and B. Saleh, Fundamentals of photonics. Canada, Wiley Interscience. 1991.
37. Lodden, G.H. and R.J. Holmes, Polarization splitting in polariton electroluminescence from an organic semiconductor microcavity with metallic reflectors. Applied Physics Letters, 2011. 98(23): p. 233301.
38. Hayashi, S., Y. Ishigaki, and M. Fujii, Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities. Physical Review B, 2012. 86(4).
39. Griffiths, D.J. and R. College, Introduction to electrodynamics. Vol. 3. 1999: prentice Hall Upper Saddle River, NJ.
40. Bertie, J.E. and S.L. Zhang, Infrared intensities of liquids. IX. The Kramers-Kronig transform, and its approximation by the finite Hilbert transform via fast Fourier transforms. Canadian Journal of Chemistry, 1992. 70(2): p. 520-531.
41. Lucarini, V., Kramers-Kronig relations in optical materials research. 2005: Springer.
42. Nitsche, R. and T. Fritz, Determination of model-free Kramers-Kronig consistent optical constants of thin absorbing films from just one spectral measurement: Application to organic semiconductors. Physical Review B, 2004. 70(19).
43. Beiser, A., S. Mahajan, and S.R. Choudhury, Concepts of modern physics. 2003: Tata McGraw-Hill Education.
44. Toll, J., Causality and the Dispersion Relation: Logical Foundations. Physical Review, 1956. 104(6): p. 1760-1770.
45. Tischler, J.R., et al., Solid state cavity QED: Strong coupling in organic thin films. Organic Electronics, 2007. 8(2-3): p. 94-113.
46. Butté, R. and N. Grandjean, A novel class of coherent light emitters: polariton lasers. Semiconductor Science and Technology, 2011. 26(1): p. 014030.
47. Deng, H., H. Haug, and Y. Yamamoto, Exciton-polariton Bose-Einstein condensation. Reviews of modern physics, 2010. 82(2): p. 1489.
48. Kéna-Cohen, S., S.A. Maier, and D.D.C. Bradley, Ultrastrongly Coupled Exciton-Polaritons in Metal-Clad Organic Semiconductor Microcavities. Advanced Optical Materials, 2013. 1(11): p. 827-833.
49. Chergui, M., et al., Ultra-fast polariton dynamics in an organic microcavity. EPJ Web of Conferences, 2013. 41: p. 04015.
50. Deng, H., H. Haug, and Y. Yamamoto, Exciton-polariton Bose-Einstein condensation. Reviews of Modern Physics, 2010. 82(2): p. 1489-1537.
51. Deveaud-Plédran, B. and K.G. Lagoudakis, Vortices in Spontaneous Bose–Einstein Condensates of Exciton–Polaritons, in Exciton Polaritons in Microcavities. 2012, Springer. p. 67-84.
52. Hagelstein, P.L., S.D. Senturia, and T.P. Orlando, Introductory applied quantum and statistical mechanics. Introductory Applied Quantum and Statistical Mechanics, by Peter L. Hagelstein, Stephen D. Senturia, Terry P. Orlando, pp. 785. ISBN 0-471-20276-2. Wiley-VCH, March 2004. Vol. 1. 2004.
53. Kéna-Cohen, S. and S.R. Forrest, Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photonics, 2010. 4(6): p. 371-375.
54. Lodden, G.H. and R.J. Holmes, Thermally activated population of microcavity polariton states under optical and electrical excitation. Physical Review B, 2011. 83(7).
55. Mazza, L., et al., Microscopic theory of polariton lasing via vibronically assisted scattering. Physical Review B, 2013. 88(7).
56. Lodden, G.H. and R.J. Holmes, Electrical excitation of microcavity polaritons by radiative pumping from a weakly coupled organic semiconductor. Physical Review B, 2010. 82(12).
57. Coulson, C., et al., Electrically controlled strong coupling and polariton bistability in double quantum wells. Physical Review B, 2013. 87(4).
58. Townsend, J.S., A modern approach to quantum mechanics. 2000: University Science Books.
59. Panzarini, G., et al., Exciton-light coupling in single and coupled semiconductor microcavities: Polariton dispersion and polarization splitting. Physical Review B, 1999. 59(7): p. 5082.
60. Skolnick, M., T. Fisher, and D. Whittaker, Strong coupling phenomena in quantum microcavity structures. Semiconductor Science and Technology, 1998. 13(7): p. 645.
61. Binnig, G., C.F. Quate, and C. Gerber, Atomic force microscope. Physical review letters, 1986. 56(9): p. 930.
62. Yokoyama, D., Molecular orientation in small-molecule organic light-emitting diodes. Journal of Materials Chemistry, 2011. 21(48): p. 19187-19202.
63. Kéna-Cohen, S. and S. Forrest, Green polariton photoluminescence using the red-emitting phosphor PtOEP. Physical Review B, 2007. 76(7).
64. 吳峻志, 高效率紅光及高效率單層全波段白光有機電激發光元件之研究, in 光電工程研究所. 2008, 國立中山大學.