跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳冠廷
Guan-Ting Wu
論文名稱: 雷射選擇圖案與無電鍍銅沉積應用於鋁矽酸玻璃基板之金屬化
Laser Selective Patterning and Electroless Copper Depostion for Metallization of Aluminosilicate Glass Substrate
指導教授: 何正榮
Jeng-Rong Ho
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 108
中文關鍵詞: 雷射圖案鋁矽酸玻璃玻璃與銅微觀面介面接合機理無電鍍銅沉積
外文關鍵詞: laser patterning, aluminosilicate glass, glass and copper microsurface, interface bonding mechanism, electroless copper deposition
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著物聯網與高頻通訊時代的來臨,在數據量爆增的趨勢下,搭配高頻元件與高頻傳輸所需的電路板也成為必須。玻璃具優異絕緣性,相較於高分子材料與矽基板,擁有更好的介電性能,可減少傳輸過程之介電損耗且其尺寸製作也不會受限制,因此,玻璃電路板逐漸受到重視。但也因玻璃具優異的物理與化學穩定性,玻璃基板上的導電金屬製作困難度高,金屬導體與玻璃基板間的足夠附著力是嚴峻的挑戰。本研究結合雷射圖案化與無電鍍銅兩技術,在玻璃基板上製作具高黏著力的銅導線。本研究採用鋁矽酸玻璃基板,藉由超快雷射之汽化機制在玻璃形成電路圖案凹槽,再浸入無電鍍液中沉積銅電極,從而得到具電路圖案之玻璃電路板。本研究首先測試雷射玻璃處理參數,在固定脈衝重疊率 ( Pulse Overlapping, PO ) 97.5%與掃描重疊率 ( Scanning Overlapping, SO ) 75%下,分別使用能量密度3.37、2.21與1.69 J/cm2做測試,結果顯示,使用較高能量密度可獲得較佳之電性,而不同的鋁矽酸玻璃也因其組成成份的不同,產生不同的銅沉積形貌與不同的電性。在玻璃與銅介面的微觀面,本研究分析介面接合機理方面,以各式不同的文獻作為前期推論方向後,根據TEM微觀結構形貌所獲得的晶格狀態與前期文獻資料,發現玻璃雷射汽化表面會因無電鍍液滲入,使玻璃內之鋁離子被銅離子置換;使用TEM分析,也發現沿汽化界面之玻璃內部有銅元素存在,TEM之繞射圖案也顯示於玻璃內部靠近表面處成多晶相,此存在於介面的銅,除了可作為無電鍍之晶種外,也具有機械錨定效用,使後續無電鍍之銅金屬與玻璃之間產生良好的黏著力。進一步,本研究也作熱循環測試,在高溫與低溫來回循環後,無電鍍銅電極仍具有良好的導電性並可有效地黏貼在玻璃基板上。相較於傳統無電鍍製程,須在玻璃上先進行敏化及活化等步驟以預先形成晶種圖案,本研究可有效流程簡化,製作出微米級之銅導線。


    With the advent of the era of Internet of Things and high-frequency communication and under the trend of explosive growth of data volume, both high-frequency devices and circuit boards are required to match the requirement of high-frequency transmission. Glass has excellent insulating properties. Compared with polymer materials and silicon substrates, it has better dielectric properties, which can reduce the dielectric loss during transmission and has high flexibility in size scaling compared to silicon. Therefore, Glass Printed Circuit Boards ( G-PCB ) attracted more attention. However, due to the excellent physical and chemical stability of glass, it is difficult to manufacture conductive metals on glass substrates, and sufficient adhesion between metal and glass substrates is a serious challenge. This study combines both techniques of laser patterning and electroless copper plating to fabricate copper wires with high adhesion on glass substrates. In this study, aluminosilicate glass substrate was used to form circuit pattern grooves in glass by the ultrafast laser induced ablation first, then the glass was immersed in electroless plating solution to deposit copper electrodes to obtain a patterned glass circuit board. The appropriate laser processing parameter sets were experimentally obtained as: the pulse overlap rate (Pulse Overlapping, PO) was 97.5%, the scanning overlap rate (Scanning Overlapping, SO) was 75%, and the energy density was 3.37, 2.21 or 1.69 J/cm2, respectively. Results show that better electrical properties can be obtained with higher energy density, and various aluminosilicate glasses have different copper deposition morphologies and electrical properties due to their intrinsic differences in compositions. This study analyzes the interface bonding mechanism based on the microscopic images on the glass-copper interface. According to TEM images and comparing that with the results in the literature, it is found that the glass laser-ablated surface was infiltrated by the electroless plating solution, so that the aluminum ions in the glass were replaced by copper ions. It was also found that copper elements exist inside the glass along the laser-ablated surface. TEM diffraction pattern further displayed that a polycrystalline phase was formed. The fact that copper presented at the interface not only served as a seed crystal for electroless deposition, but also acted as a mechanical anchor. As a result, the adhesiveness of electroless copper deposition and glass was favorable. The thermal cycle test was also performed to further examine the copper adhesion. After several back-and-forth cycles between high and low temperatures, the electroless copper still showed good electrical conductivity and effective adhesion to the glass substrate. Compared with the traditional electroless copper plating process that the steps such as sensitization and activation must be performed on the glass to form the seed pattern in advance, this study can effectively simplify the process and produce micron-scale copper wires.

    中文摘要 .................................................................................i ABSTRACT.................................................................................vi CONTENTS.................................................................................viii LIST OF FIGURES..........................................................................xi LIST OF TABLES...........................................................................xvii Chapter 1 緒論...........................................................................1 1-1 背景...............................................................................1 1-2 研究動機與目的......................................................................3 Chapter 2 文獻回顧.......................................................................5 2-1 金屬化玻璃基板的演變.................................................................5 2-1-1 傳統金屬化玻璃製程..............................................................5 2-1-2 簡化玻璃金屬化製程..............................................................7 2-1-3 雷射玻璃金屬化製程..............................................................10 2-1-4 玻璃金屬化進程探討..............................................................16 2-2 金屬與玻璃鍵結原理..................................................................17 2-2-1 化學鍵結.......................................................................17 2-2-2 潤濕角與機械錨定................................................................19 2-2-3 表面電位分布....................................................................22 2-2-4 金屬與玻璃鍵結原理探討...........................................................24 2-3 無電鍍機制探討......................................................................25 Chapter 3 實驗步驟與方法..................................................................29 3-1 實驗架構與流程......................................................................29 3-2 樣品製備...........................................................................30 3-3 雷射圖案化.........................................................................30 3-3-1 飛秒雷射系統....................................................................30 3-3-2 實驗設置........................................................................33 3-3-3 雷射加工參數說明.................................................................33 3-4 無電鍍液配置........................................................................36 3-5 量測儀器介紹........................................................................37 3-6 材料與基材清單......................................................................43 Chapter 4 結果與討論......................................................................47 4-1 雷射掃描對Corning Eagle XG® 玻璃金屬化的影響探討......................................47 4-1-1 不同脈衝重疊率 ( PO ) 對Corning Eagle XG® 玻璃表面形貌與附著力的影響...............47 4-1-2 不同頻率對Corning Eagle XG® 玻璃表面形貌與附著力的影響.............................49 4-2 多種玻璃雷射圖案化無電鍍銅之研究分析...................................................51 4-2-1 鈉鈣玻璃金屬化分析探討............................................................51 4-2-2 康寧鋁矽酸玻璃金屬化分析探討......................................................53 4-2-3 其他(非康寧)鋁矽酸玻璃金屬化分析探討.............................................55 4-3 銅與玻璃介面的微觀形貌................................................................57 4-3-1 截面形貌分析.....................................................................57 4-3-2 微觀結構與EDX量測分析.............................................................58 4-4 鋁矽酸玻璃雷射金屬化機制..............................................................65 4-5 電性測量與分析.......................................................................69 4-6 熱循環測試...........................................................................78 Chapter 5 結論............................................................................85 參考文獻..................................................................................86 碩士論文口試教授問題集.....................................................................88

    [1] TNLMedia. (2019). How does the Internet of Things penetrate the real estate market now and in the future. Available: https://www.inside.com.tw/article/16136-iot-in-estate-market
    [2] 沈裕琪博士, "介電常數及散逸係數在高頻電磁的傳輸損耗探討The investigation of dielectric constant and loss tangent property for high speed transmission line loss," 2020.
    [3] kknews. (2015). 玻璃纖維布用途和介紹. Available: https://kknews.cc/zh-tw/other/mm86266.html
    [4] F. s. R. Technology. (2015). PCB Design & Thinking. Available: https://franejian.wordpress.com/2015/11/30/pcb-design-thinking/
    [5] N. A. f. E. Research. (2021). Glass transition temperature. Available: https://terms.naer.edu.tw/detail/1327629/
    [6] CHEERTIME. (2021). Taiwan PCB custom manufacturer. Available: http://www.cheer-time.com.tw/index.php?view=custom1&d=30
    [7] 高育祥, "濕製程技術於玻璃中介層金屬化應用," 2017.
    [8] K. I. Shigeo ONITAKE, Masatoshi TAKAYAMA and Tsubasa FUJIMURA, "Direct Copper metallization on glass technology," 2017.
    [9] M. Schlesinger, M. Paunovic, Ed. Modern Electroplating, 5th ed. 2010.
    [10] AncientPages.com. (2016). Copper: First Metal Used By Ancient Man More Than 10,000 Years Ago. Available: https://www.ancientpages.com/2016/10/25/copper-first-metal-used-ancient-man-10000-years-ago/
    [11] S. Ghosh, "Electroless copper deposition: A critical review," Thin Solid Films, vol. 669, pp. 641-658, 2019.
    [12] 靖邦電子. (2019). 什麼是高頻PCB? Available: https://read01.com/zh-tw/nEa75mz.html#.Yi-D9XpByUk
    [13] kknews. (2020). Mini LED背板:PCB遭淘汰,玻璃上位?. Available: https://kknews.cc/zh-tw/finance/qxl54eb.html
    [14] M. A. D. A. J. F. D'Amico, J. F. Henrickson, J. T. Kenney, and D. J. Sharp, "Selective Electroless Metal Deposition Using Patterned Photo‐Oxidation of Sn(II) Sensitized Substrates.," Western Electric Company, Engineering Research Center, Princeton, New Jersey 08540, 1971.
    [15] H. Yoshiki, V. Alexandruk, K. Hashimoto, and A. Fujishima, "Electroless Copper Plating Using Zno Thin-Film Coated on a Glass Substrate," (in English), Journal of the Electrochemical Society, vol. 141, no. 5, pp. L56-L58, May 1994.
    [16] C.-W. Cheng, P.-F. Chan, and W.-P. Dow, "Direct Copper Pattern Plating on Glass and Ceramic Substrates Using an Al-Doped ZnO as an Adhesive and Conducting Layer," Journal of The Electrochemical Society, vol. 164, no. 12, pp. D687-D693, 2017.
    [17] Z. Zhou et al., "Fabrication of an integrated Raman sensor by selective surface metallization using a femtosecond laser oscillator," Optics Communications, vol. 282, no. 7, pp. 1370-1373, 2009.
    [18] K. Sugioka, T. Hongo, H. Takai, and K. Midorikawa, "Selective metallization of internal walls of hollow structures inside glass using femtosecond laser," (in English), Applied Physics Letters, vol. 86, no. 17, Apr 25 2005.
    [19] J. Xu et al., "Selective metallization on insulator surfaces with femtosecond laser pulses," Opt Express, vol. 15, no. 20, pp. 12743-8, Oct 1 2007.
    [20] J. Long, J. Li, M. Li, and X. Xie, "Fabrication of robust metallic micropatterns on glass surfaces by selective metallization in laser-induced porous surface structures," Surface and Coatings Technology, vol. 374, pp. 338-344, 2019.
    [21] Y. Hanada, K. Sugioka, and K. Midorikawa, "Selective metallization of photostructurable glass by femtosecond laser direct writing for biochip application," Applied Physics A, vol. 90, no. 4, pp. 603-607, 2007.
    [22] D. C. R. Matthieu Liger, Yu-Chong Tai Caltech Micromachining Laboratory, "ROBUST PARYLENE-TO-SILICON MECHANICAL ANCHORING," 2003.
    [23] K. Ratautas, M. Andrulevičius, A. Jagminienė, I. Stankevičienė, E. Norkus, and G. Račiukaitis, "Laser-assisted selective copper deposition on commercial PA6 by catalytic electroless plating – Process and activation mechanism," Applied Surface Science, vol. 470, pp. 405-410, 2019.
    [24] D. Huang et al., "Selective metallization of glass with improved adhesive layer and optional hydrophobic surface," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 616, 2021.
    [25] M. P. Electrochemicals Inc., USA, "Performance and reliability issues for a graphite based direct metalization process.," 1999
    [26] 中文百科全書. (2022). 鍵能(Bond Energy). Available: https://www.newton.com.tw/wiki/%E9%8D%B5%E8%83%BD
    [27] C. Carraro, R. Maboudian, and L. Magagnin, "Metallization and nanostructuring of semiconductor surfaces by galvanic displacement processes," Surface Science Reports, vol. 62, no. 12, pp. 499-525, 2007.
    [28] M. Schlesinger and M. Paunovic, Modern electroplating. John Wiley & Sons, 2011.
    [29] 彭承洋, "飛秒雷射誘導鐵基金屬玻璃週期性表面結構的特徵 Characterizations of Femtosecond Laser-induced Subwavelength Surface Structures on Fe-based Metallic Glass," 2021.
    [30] KEYENCE. (2021). Laser scanning confocal microscope. Available: https://www.keyence.com/ss/products/microscope/glossary/cat2/laser_scanning_confocal_microscopes/
    [31] M. o. S. a. Technology. (2021). Field-emission Scanning Electron Microscopy. Available: https://vir.most.gov.tw/VI_SearchResult?center=8A818346-1E15-CEA6-011E-15D1ADA70011
    [32] M. o. S. a. Technology. (2021). FEI Versa 3D High-Resolution Dual-Beam Focus-Ion-Beam System. Available: https://vir.most.gov.tw/VI_SearchResult?center=8A818346-1E15-CEA6-011E-15D1ADA70011
    [33] M. o. S. a. Technology. (2021). High Resolution STEM. Available: https://vir.most.gov.tw/VI_SearchResult?center=8A818346-1E15-CEA6-011E-15D1ADA70011
    [34] Element14. (2021). KEITHLEY 2410 Source Meter. Available: https://in.element14.com/keithley/2410/meter-sourcemeter-1100v/dp/2772527
    [35] H. S. Lee and M. Y. Yang, "The effect of negative pressure aging on the aggregation of Cu2O nanoparticles and its application to laser induced copper electrode fabrication," Phys Chem Chem Phys, vol. 17, no. 6, pp. 4360-6, Feb 14 2015.

    QR CODE
    :::