跳到主要內容

簡易檢索 / 詳目顯示

研究生: 范植傑
Chih-Chieh Fan
論文名稱: 被動式吸振器應用於結構多模態減振
Application of a Passive Piezoelectric Absorber for Reducing Multi-Mode Vibration of Structures
指導教授: 黃以玫
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 168
中文關鍵詞: 被動式壓電吸振器多模態負電容
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要目的為探討被動式吸振器應用於結構多模態減振,應用於受外力而振動之懸臂樑,藉由將樑之表面貼上陶瓷壓電片,再設計雙迴圈電路搭配電阻、電感、電容、二極體而組成的被動式吸振電路,以達到懸臂樑之減振效果。
    文中首先使用漢米爾頓原理推導懸臂樑與壓電材料耦合之結構方程式,接著推導吸振電路方程式,並將結構方程式與電路方程式進行耦合,最後使用數值程式求解系統之位移響應。並設計不同的電路與變化參數,得出減振效果較佳的吸振器電路設計,最後透過實驗驗證數值分析之結果。依數值與實驗結果觀察,此種具上下迴路之被動吸振器可達到多模態的吸振效果。


    The purpose of this research is to develop a newly designed passive piezoelectric absorber for reducing multi-mode vibration of a cantilever beam excited by an external force. A tranditional passive piezoelectric absorber consists of a piezoelectric shunt attached to the structure, a resistance, and an inductance. The new absorber introduced here includes an additional passive loop in parallel.
    In the thesis, the equations of motion of the beam are derived by using Hamilton’s principle and discretized by Galerkin’s method. Numerical program is developed to simultaneously solve the equations of motion of the beam, which is coupled with circuit equations of the absorber. Different designs of the absorber circuits and different values of parameter are used to find the better results. The numerical results are confirmed by experimental results. According to the present results, the new passive absorber can achieve more vibration reduction of a structure than the tranditional passive absorber.

    中文摘要 i 英文摘要 ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 xii 符號說明 xiii 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 內容架構 6 第二章 壓電材料理論 7 2-1 壓電材料簡介 7 2-2 壓電材料種類 8 2-3 壓電材料方程式 9 第三章 複合運動系統方程式 12 3-1 漢米頓原理 12 3-2 系統運動方程式 16 3-3 系統運動方程式離散化 18 第四章 吸振電路方程式 21 4-1 壓電材料電壓轉換 21 4-2 標準式被動吸振器 22 4-3 其他型態的被動式吸振器 26 第五章 數值結果與分析 38 5-1 數值程式架構 38 5-2 系統參數設定 39 5-3 設計1吸振電路數值分析 40 5-4 設計2吸振電路數值分析 42 5-4-1 設計2-1:上迴路第一模態頻率,全迴路第二模態頻率 42 5-4-2 設計2-2:上迴路第二模態頻率,全迴路第一模態頻率 51 5-4-3 設計2-3:改變電路中電阻R1位置 53 5-4-4 設計2-4:電路中加入二極體 54 5-4-5 設計2-5:電路中加入兩個二極體 55 5-4-6 設計2結論 56 5-5 設計3吸振電路數值分析 56 5-5-1 設計3-1:上迴路第一模態頻率,全迴路第二模態頻率 57 5-5-2 設計3-2:上迴路第二模態頻率,全迴路第一模態頻率 58 5-5-3 設計3-3:電路中加入二極體 59 5-6 設計4吸振電路數值分析 60 5-6-1 設計4-1:上迴路第一模態頻率,全迴路第二模態頻率 60 5-6-2 設計4-2:上迴路第二模態頻率,全迴路第一模態頻率 61 5-6-3 設計4-3:電路中加入二極體 64 第六章 實驗結果 65 6-1 實驗設備和實驗流程介紹 65 6-2 吸振器實驗設定 67 第七章 結論與未來建議 74 7-1 結論 74 7-2 未來建議 75 參考文獻 76

    吳朗, 1994, 電子陶瓷-壓電, 全新科技出版社, 台北市.

    黃鈺書, 2010, “狀態變換壓電吸振器之初探”, 國立中央大學機械工程研究所碩士論文, 桃園縣.

    郭家成, 2014, “被動式狀態變換壓電吸振器應用於懸臂樑之減振” , 國立中央大學機械工程研究所碩士論文, 桃園縣.

    Aoki, S. and Watanabe, T., 2006, “An investigation of an impact vibration absorber with hysteresis damping,” ASME Journal of Pressure Vessel Technology, Vol. 128, pp. 508-515.

    Behrens, S., Moheimani, S.O.R., and Fleming A.J., 2003 “Multiple mode current flowing passive piezoelectric shunt controller,” Journal of sound and Vibration, Vol. 266, pp. 929-942.

    Clark, W.W., 2000, “Vibration control with state-switched piezoelectric materials,” Journal of Intelligent Material Systems and Structures, Vol. 11, pp. 263-271.

    Collette, F.S., 1998, “A combined tuned absorber and pendulum impact damper under random excitation,” Journal of sound and Vibration, Vol. 216, pp. 199-213.
    Corr, L.R. and Clark, W.W., 2002, “Comparison of low-frequency piezoelectric switching shunt techniques for structural damping,” Smart Materials and Structures, Vol. 11, pp. 370–376.
    Ekwaro-Osire, S. and Desen, I. C., 2001, “Experimental study on an impact vibration absorber,” Journal of Vibration and Control, Vol. 7, pp. 471-493

    Giorgio, I., Culla, A. and del Vescovo, D., 2009, “Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network,” Archive of Applied Mechanics, Vol. 79, pp. 859-879

    Hagood, N.W. and Flotow, A., 1991, “Damping of Structural Vibrations with Piezoelectric Materials and Passive Electrical Networks”, Journal of Sound and Vibration, Vol. 146, pp. 243-268.

    Holdhusen, M.H. and Cunefare, K.A., 2003, “Damping effects on the state-switched absorber used for vibration suppression,” Journal of Intelligent Material Systems and Structures, Vol. 14, pp. 551-561.

    Lee, J.Y., 2008, “The Corresponding phenomena of mechanical and electronic impact oscillator,” Journal of Sound and Vibration, Vol. 311, pp. 579-587.

    Moheimani, S.O.R., 2003, “A Survey of Recent Innovations in Vibration Damping and Control Using Shunted Piezoelectric Transducers” IEEE Transactions on Control Systems Technology, Vol. 11, pp. 482-494

    Neubauer, M., Oleskiewicz, R., Popp, K., and Krzyzynski, T., 2006, “Optimization of damping and absorbing performance of shunted piezo elements utilizing negative capacitance,” Journal of Sound and Vibration, Vol. 298, pp. 84-107

    Park, C.H. and Park, H.C., 2003, “Multiple-Mode Structural Vibration Control Using Negative Capacitive Shunt Damping,” KSME International Journal, Vol. 17, pp. 1650-1658.

    Preumont, A., de Marneffe, B., Deraemaeker, A., and Bossens, F., 2008, “The damping of a truss structure with a piezoelectric transducer,” Computers and Structures, Vol. 86, pp. 227-239.

    Wang, S., Kim, S.-M. and Brennan, M.J., 2010, “Dynamic analysis and optimal design of a passive and an active piezo-electrical dynamic vibration absorber,” Journal of Sound and Vibration, Vol. 330, pp. 603-614.

    Zimmerman, R.A., Celaschi, S., and Neto, L.G., 1992, “Electronic bouncing ball,” American Journal of Physics, Vol. 60, pp. 370-375.

    QR CODE
    :::