跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許家偉
Chia-Wei Hsu
論文名稱: 高效電化學二氧化碳還原觸媒及其應用於H型反應槽及流通槽之最佳化研究
The Optimization of Highly Effective Carbon Dioxide Reduction Reaction Catalysts Applied in H-cells and Flow Cells
指導教授: 王冠文
Kuan-Wen Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 62
中文關鍵詞: 氧化銦二氧化碳還原反應法拉第效率玻碳電極氣體擴散電極質量傳輸H型反應槽流通槽
外文關鍵詞: Cu, In2O3, CO2 reduction reaction, faradaic efficiency, glassy carbon electrode, gas diffusion electrode, mass transfer, H-cells, flow cells
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去的一個世紀裡,大氣中的二氧化碳 (carbon dioxide, CO2) 排放量急劇增加。 CO2 還原反應 (CO2 reduction reaction, CO2RR) 是減少全球碳足跡最有希望的解決方案之一。具有高選擇性 (selectivity) 和活性的催化劑已在H型反應槽(H-cells)中得到廣泛研究。然而CO2RR在H-cells 的應用因其產量低,電流密度通常小於10 mA/cm2,限制其商業化應用。
    因此,本研究將銅、氧化銦 (Cu-In2O3) 觸媒塗佈於H-cells和流通槽(flow cells)中的玻碳電極 (glassy carbon electrode, GCE)以及氣體擴散電極 (gas diffusion electrode, GDE)上,並研究其CO2 還原成一氧化碳 (carbon monoxide, CO) 的選擇性以及電流密度。在H-cells 的測試中, GCE 和 GDE 上的觸媒在 -0.7 V (vs. RHE) 下有著96和 92 % 的高CO法拉第效率 (faradaic efficiency, FE),其電流密度分別為 3 和 6 mA/cm2。此外,在液體和氣體進料的flow cells中,CO FE 分別為 89和 86 %,具有 30 和 90 mA/cm2 的高電流密度,遠高於 H-cells 5 倍和 15 倍的電流密度。因H-cell的設計改善了質量傳輸 (mass transfer) 問題並降低了電極之間的電阻, 使其觸媒效能有著極大的提升,本研究提供了一種有效的方式,可將實驗室規模的 CO2RR 朝向工業應用發展。


    The carbon dioxide (CO2) emission in the atmosphere has increased dramatically in the past century. The CO2 reduction reaction (CO2RR) is one of the most promising solutions to reduce the global carbon footprint. The catalysts which have high selectivity and activity have been widely studied in H-cells. However, the application of H-cells is still far from the commercialization of CO2RR because of its low productivity (< 10 mA/cm2).
    In this study, a comparative study of Cu-In2O3 catalysts immobilized onto glassy carbon electrode (GCE), gas diffusion electrode (GDE) in H-cells and flow cells is conducted to selectively reduce CO2 to carbon monoxide (CO). In the setup of H cells, catalysts on GCE and GDE exhibit a high CO faradaic efficiency (FE) of 96 and 92 % with a current density of 3 and 6 mA/cm2, respectively, at -0.7 V vs. RHE. Furthermore, in liquid and gas feed flow cells configurations, the CO FE is 89 and 86 % with an extraordinarily high current density of 30 and 90 mA/cm2, which increase by the factor of 5 and 15 compared with that in H-cells, respectively. These outstanding catalyst activities have been achieved through the flow cell design that overcomes the mass transfer issues and reduces the resistance between the electrodes. This study provides an effective strategy to move CO2RR in lab scale towards industrial application.

    摘要 i Abstract ii 致謝 iii Table of Contents v List of Figures vii List of Tables ix Chapter 1 Introduction 1 1.1 Mechanism of CO2RR 3 1.2 The electrodes for H-cells 6 1.3 Flow cell reactors 9 1.4 Motivation and Approach 12 Chapter 2 Experimental Section 13 2.1 Materials 13 2.2 Preparation of Catalysts 14 2.3 Physical Characterizations of Catalyst 15 2.4 Flow cell design 16 2.5 CO2RR measurement 18 2.5.1 H-cell measurement 18 2.5.2 Flow-cell measurement 20 2.5.3 Gas chromatographic system 20 2.5.4 Standard preparation 21 Chapter 3 Results and Discussion 22 3.1 Catalysts characterization 22 3.2 The optimization of CO2RR in H-cell 26 3.2.1 The effect of carbon papers 26 3.2.2 CO2RR performance in H-cell 29 3.2.3 Summary 32 3.3 Flow cell CO2RR performance 33 3.3.1 The cathode flow-field plate 33 3.3.2 CO2RR performance in the flow cell 33 3.3.3 Summary 40 Chapter 4 Conclusions 41 References 42

    [1] Albo, J.; Irabien, A., Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol. J. Catal. 2016, 343, 232-239.
    [2] Singh, S.; Noori, M. T.; Verma, N., Efficient bio-electroreduction of CO2 to formate on a iron phthalocyanine-dispersed CDC in microbial electrolysis system. Electrochim. Acta 2020, 338, 135887.
    [3] Varela, A. S., The importance of pH in controlling the selectivity of the electrochemical CO2 reduction. Curr. Opin. Green Sustain. Chem. 2020, 26, 100371.
    [4] Zhu, D. D.; Liu, J. L.; Qiao, S. Z., Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide. Adv. Mater. 2016, 28 (18), 3423-3452.
    [5] Sun, Z.; Ma, T.; Tao, H.; Fan, Q.; Han, B., Fundamentals and Challenges of Electrochemical CO2 Reduction Using Two-Dimensional Materials. Chem. 2017, 3 (4), 560-587.
    [6] Luo, W.; Xie, W.; Mutschler, R.; Oveisi, E.; De Gregorio, G. L.; Buonsanti, R.; Züttel, A., Selective and Stable Electroreduction of CO2 to CO at the Copper/Indium Interface. ACS Catal. 2018, 8 (7), 6571-6581.
    [7] Zhao, Y.; Wang, C.; Wallace, G. G., Tin nanoparticles decorated copper oxide nanowires for selective electrochemical reduction of aqueous CO2 to CO. J. Mater. Chem. A 2016, 4 (27), 10710-10718.
    [8] Rasul, S.; Anjum, D. H.; Jedidi, A.; Minenkov, Y.; Cavallo, L.; Takanabe, K., A Highly Selective Copper–Indium Bimetallic Electrocatalyst for the Electrochemical Reduction of Aqueous CO2 to CO. Angew. Chem., Int. Ed. 2015, 54 (7), 2146-2150.
    [9] Endrődi, B.; Bencsik, G.; Darvas, F.; Jones, R.; Rajeshwar, K.; Janáky, C., Continuous-flow electroreduction of carbon dioxide. Prog. Energy Combust. Sci. 2017, 62, 133-154.
    [10] Liang, S.; Altaf, N.; Huang, L.; Gao, Y.; Wang, Q., Electrolytic cell design for electrochemical CO2 reduction. J. CO2 Util. 2020, 35, 90-105.
    [11] Garza, A. J.; Bell, A. T.; Head-Gordon, M., Mechanism of CO2 Reduction at Copper Surfaces: Pathways to C2 Products. ACS Catal. 2018, 8 (2), 1490-1499.
    [12] Whipple, D. T.; Kenis, P. J. A., Prospects of CO2 Utilization via Direct Heterogeneous Electrochemical Reduction. J. Phys. Chem. Lett. 2010, 1 (24), 3451-3458.
    [13] Weekes, D. M.; Salvatore, D. A.; Reyes, A.; Huang, A.; Berlinguette, C. P., Electrolytic CO2 Reduction in a Flow Cell. Acc. Chem. Res. 2018, 51 (4), 910-918.
    [14] Newman, J.; Hoertz, P. G.; Bonino, C. A.; Trainham, J. A., Review: An Economic Perspective on Liquid Solar Fuels. J. Electrochem. Soc. 2012, 159 (10), A1722-A1729.
    [15] Feaster, J. T.; Shi, C.; Cave, E. R.; Hatsukade, T.; Abram, D. N.; Kuhl, K. P.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F., Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes. ACS Catal. 2017, 7 (7), 4822-4827.
    [16] Yang, H.; Wu, Y.; Lin, Q.; Fan, L.; Chai, X.; Zhang, Q.; Liu, J.; He, C.; Lin, Z., Composition Tailoring via N and S Co-doping and Structure Tuning by Constructing Hierarchical Pores: Metal-Free Catalysts for High-Performance Electrochemical Reduction of CO2. Angew. Chem., Int. Ed. 2018, 57 (47), 15476-15480.
    [17] Möller, T.; Ju, W.; Bagger, A.; Wang, X.; Luo, F.; Ngo Thanh, T.; Varela, A. S.; Rossmeisl, J.; Strasser, P., Efficient CO2 to CO electrolysis on solid Ni–N–C catalysts at industrial current densities. Energy Environ. Sci. 2019, 12 (2), 640-647.
    [18] Quan, Y.; Zhu, J.; Zheng, G., Electrocatalytic Reactions for Converting CO2 to Value-Added Products. Small 2021, 1 (10), 2100043.
    [19] Won, D. H.; Choi, C. H.; Chung, J.; Chung, M. W.; Kim, E.-H.; Woo, S. I., Rational Design of a Hierarchical Tin Dendrite Electrode for Efficient Electrochemical Reduction of CO2. ChemSusChem 2015, 8 (18), 3092-3098.
    [20] Zhang, W.; Hu, Y.; Ma, L.; Zhu, G.; Wang, Y.; Xue, X.; Chen, R.; Yang, S.; Jin, Z., Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals. Adv. Sci. Lett. 2018, 5 (1), 1700275.
    [21] Rosen Brian, A.; Salehi-Khojin, A.; Thorson Michael, R.; Zhu, W.; Whipple Devin, T.; Kenis Paul, J. A.; Masel Richard, I., Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials. Science 2011, 334 (6056), 643-644.
    [22] Fan, L.; Xia, C.; Yang, F.; Wang, J.; Wang, H.; Lu, Y., Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2 products. Sci. Adv. 2020, 6 (8), eaay3111.
    [23] Zhao, C.; Wang, J., Electrochemical reduction of CO2 to formate in aqueous solution using electro-deposited Sn catalysts. Chem. Eng. J. 2016, 293, 161-170.
    [24] Chen, Y.; Li, C. W.; Kanan, M. W., Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles. J. Am. Chem. Soc. 2012, 134 (49), 19969-19972.
    [25] Qiao, J.; Liu, Y.; Hong, F.; Zhang, J., A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 2014, 43 (2), 631-675.
    [26] Larrazábal, G. O.; Martín, A. J.; Mitchell, S.; Hauert, R.; Pérez-Ramírez, J., Enhanced Reduction of CO2 to CO over Cu–In Electrocatalysts: Catalyst Evolution Is the Key. ACS Catal. 2016, 6 (9), 6265-6274.
    [27] He, J.; Dettelbach, K. E.; Salvatore, D. A.; Li, T.; Berlinguette, C. P., High-Throughput Synthesis of Mixed-Metal Electrocatalysts for CO2 Reduction. Angew. Chem., Int. Ed. 2017, 56 (22), 6068-6072.
    [28] Hwang, D. S.; Park, C. H.; Yi, S. C.; Lee, Y. M., Optimal catalyst layer structure of polymer electrolyte membrane fuel cell. Int. J. Hydrog. Energy 2011, 36 (16), 9876-9885.
    [29] Salvatore, D. A.; Weekes, D. M.; He, J.; Dettelbach, K. E.; Li, Y. C.; Mallouk, T. E.; Berlinguette, C. P., Electrolysis of Gaseous CO2 to CO in a Flow Cell with a Bipolar Membrane. ACS Energy Lett. 2018, 3 (1), 149-154.
    [30] Alvarez-Guerra, M.; Quintanilla, S.; Irabien, A., Conversion of carbon dioxide into formate using a continuous electrochemical reduction process in a lead cathode. Chem. Eng. J. 2012, 207-208, 278-284.
    [31] Del Castillo, A.; Alvarez-Guerra, M.; Irabien, A., Continuous electroreduction of CO2 to formate using Sn gas diffusion electrodes. AIChE J. 2014, 60 (10), 3557-3564.
    [32] Yang, K.; Kas, R.; Smith, W. A.; Burdyny, T., Role of the Carbon-Based Gas Diffusion Layer on Flooding in a Gas Diffusion Electrode Cell for Electrochemical CO2 Reduction. ACS Energy Lett. 2021, 6 (1), 33-40.
    [33] Lees, E. W.; Goldman, M.; Fink, A. G.; Dvorak, D. J.; Salvatore, D. A.; Zhang, Z.; Loo, N. W. X.; Berlinguette, C. P., Electrodes Designed for Converting Bicarbonate into CO. ACS Energy Lett. 2020, 5 (7), 2165-2173.
    [34] Jhong, H.-R. M.; Brushett, F. R.; Kenis, P. J. A., The Effects of Catalyst Layer Deposition Methodology on Electrode Performance. Adv. Energy Mater. 2013, 3 (5), 589-599.
    [35] Zhang, J.; Qiao, M.; Li, Y.; Shao, Q.; Huang, X., Highly Active and Selective Electrocatalytic CO2 Conversion Enabled by Core/Shell Ag/(Amorphous-Sn(IV)) Nanostructures with Tunable Shell Thickness. ACS Appl. Mater. Interfaces 2019, 11 (43), 39722-39727.
    [36] Bitar, Z.; Fecant, A.; Trela-Baudot, E.; Chardon-Noblat, S.; Pasquier, D., Electrocatalytic reduction of carbon dioxide on indium coated gas diffusion electrodes—Comparison with indium foil. Appl. Catal. B 2016, 189, 172-180.
    [37] Qi, Z.; Hawks, S. A.; Horwood, C.; Biener, J.; Biener, M. M., Mitigating mass transport limitations: hierarchical nanoporous gold flow-through electrodes for electrochemical CO2 reduction. Adv. Mater. 2022, 3 (1), 381-388.
    [38] Vasileff, A.; Xu, C.; Jiao, Y.; Zheng, Y.; Qiao, S.-Z., Surface and Interface Engineering in Copper-Based Bimetallic Materials for Selective CO2 Electroreduction. Chem. 2018, 4 (8), 1809-1831.
    [39] Hori, Y.; Konishi, H.; Futamura, T.; Murata, A.; Koga, O.; Sakurai, H.; Oguma, K., “Deactivation of copper electrode” in electrochemical reduction of CO2. Electrochim. Acta 2005, 50 (27), 5354-5369.
    [40] Wuttig, A.; Surendranath, Y., Impurity Ion Complexation Enhances Carbon Dioxide Reduction Catalysis. ACS Catal. 2015, 5 (7), 4479-4484.
    [41] Vennekoetter, J.-B.; Sengpiel, R.; Wessling, M., Beyond the catalyst: How electrode and reactor design determine the product spectrum during electrochemical CO2 reduction. Chem. Eng. J. 2019, 364, 89-101.
    [42] Duan, Q.; Wang, H.; Benziger, J., Transport of liquid water through Nafion membranes. J. Membr. Sci. 2012, 392-393, 88-94.
    [43] Jiang, K.; Siahrostami, S.; Zheng, T.; Hu, Y.; Hwang, S.; Stavitski, E.; Peng, Y.; Dynes, J.; Gangisetty, M.; Su, D.; Attenkofer, K.; Wang, H., Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 11 (4), 893-903.
    [44] Tornow, C. E.; Thorson, M. R.; Ma, S.; Gewirth, A. A.; Kenis, P. J. A., Nitrogen-Based Catalysts for the Electrochemical Reduction of CO2 to CO. J. Am. Chem. Soc. 2012, 134 (48), 19520-19523.
    [45] Abdinejad, M.; Dao, C.; Zhang, X.-A.; Kraatz, H. B., Enhanced electrocatalytic activity of iron amino porphyrins using a flow cell for reduction of CO2 to CO. J. Energy Chem. 2021, 58, 162-169.
    [46] Luo, W.; Zhang, J.; Li, M.; Züttel, A., Boosting CO Production in Electrocatalytic CO2 Reduction on Highly Porous Zn Catalysts. ACS Catal. 2019, 9 (5), 3783-3791.
    [47] Vedharathinam, V.; Qi, Z.; Horwood, C.; Bourcier, B.; Stadermann, M.; Biener, J.; Biener, M., Using a 3D Porous Flow-Through Electrode Geometry for High-Rate Electrochemical Reduction of CO2 to CO in Ionic Liquid. ACS Catal. 2019, 9 (12), 10605-10611.
    [48] Liu, J.; Peng, L.; Zhou, Y.; Lv, L.; Fu, J.; Lin, J.; Guay, D.; Qiao, J., Metal–Organic-Frameworks-Derived Cu/Cu2O Catalyst with Ultrahigh Current Density for Continuous-Flow CO2 Electroreduction. ACS Sustain. Chem. Eng. 2019, 7 (18), 15739-15746.
    [49] Zhang, J.; Luo, W.; Züttel, A., Self-supported copper-based gas diffusion electrodes for CO2 electrochemical reduction. J. Mater. Chem. A 2019, 7 (46), 26285-26292.
    [50] Lan, Y.; Ma, S.; Lu, J.; Kenis, P., Investigation of a Cu(core)/CuO(shell) Catalyst for Electrochemical Reduction of CO2 in Aqueous Soultion. Int. J. Electrochem. Sci. 2014, 9, 7300-7308.

    QR CODE
    :::