| 研究生: |
吳佩蓉 Pei-jung Wu |
|---|---|
| 論文名稱: |
核廢料最終處置場依序耦合熱-水-力學分析之溫度與飽和度歷程變化 Temperature and saturation histories of sequentially coupled thermal-hydro-mechanical calculation of final nuclear fuel waste repository |
| 指導教授: |
張瑞宏
Jui-hung Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 深地層處置 、緩衝材料 、熱傳導係數 、飽和度 、依序耦合熱—水—力學分析 |
| 外文關鍵詞: | Deep geological disposal, Buffer material, Thermal conductivity, Saturation, Coupled thermal-hydrological-mechanical analysis |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
用過核燃料的最終處置方式,必須足以防止廢料污染物釋放至生物圈,而對環境與生物造成危害。國際間對此一課題進行許多評估與研究,經由安全性、技術與經濟等多方考量,深地層處置(deep geologic disposal)被認為是最安全可行的處理措施。
本研究以深地層處置之概念為基礎,參考瑞典相關文獻,考慮熱源、緩衝材、回填材、岩石之熱與水力特性,並考量國內文獻對處置場尺寸、初始溫度條件與熱源散熱強度的設計,以有限元素軟體ABAQUS 進行依序耦合熱—水—力學之分析。
在整個處置場完成各材料設置、回填與密封後,地下水的入侵將無可避免,各材料之水力傳導係數與孔隙壓力邊界條件將影響各材料飽和度增加的速率;就包覆著廢料罐的緩衝材來說,地下水入侵會使其飽和度上升,導致熱傳係數增高,熱傳遞速度加快,而溫度迅速向外擴散的結果使得材料結構的不穩定性增加。
本研究主要針對緩衝材熱傳導係數隨飽和度變化的影響,進行依序耦合熱—水—力分析,其結果顯示飽和度歷時變化將對處置場之最高溫度造成顯著的影響。
A nuclear fuel waste final disposal must provide protection to the creatures and the environment from the hazards of contaminant release.There are many international studying and evaluation about the abject.
Considering of safety, technology and economy, the method of deep geologic disposal is regarded as the most safety and stable way.
In this study, based upon the concept of the deep disposal method, thinking about the thermal, hydrological and mechanical properties of the paper in Sweden. In addition of considering the size of repository, initial condition and boundary condition of the internal paper. Using the “staggered solution technique” to make coupled of thermal-hydro-mechanical calculations by finite element code ABAQUS.
After the completion of the emplacement, filling and sealing .The invasion of the groundwater is not avoidable. The hydraulic conductivities of materials and pore pressure boundary condition will influence the rate of saturation. In the buffer material, the increasing saturation would cause the thermal conductivity to go up.
The fast diffuse heat would result in structurally unstable of thematerials.
The study directed at the influences of the saturation histories on the thermal conductivity of buffer material, to make the scoping analyses. In the results, the maximum temperature in the repository has obvious change due to the saturation histories.
【1】核能研究所,「我國用過核燃料深層地質處置概念討論會」,行政院原子能委員會核能研究所,2002。
【2】Lennart Börgesson, Jan Hernelind, “Coupled thermal-hydro-
Mechanical calculations of the water saturation phase of a KBS-3 deposition hole”, SKB Technical Report TR-06-14,December1999.
【3】潘國樑,應用環境地質學,初版,地景出版社,1993。
【4】台電公司網站,http://www.taipower.com.tw/。
【5】陳文泉、黃偉慶,「深地層處置緩衝材料熱-水力-機械-化學耦
合作用探討」,核研季刊第42期,第38-48 頁,2002。
【6】行政院原子能委原會網站,http://www.aec.gov.tw/www/index.php。
【7】劉尚志、林鴻旭、焦自強、張璞,「高放射性廢料終極處置—工程障壁之探討」,原子能委員會核能彙刊,第二十五卷,第四期,第42-51頁,1988。
【8】劉尚志、張璞、焦自強,「高放射性廢料深層地質處置」,原子能委員會核能彙刊,第二十四卷,第五期,第2-33頁,1988。
【9】邱太銘,「國外用過核燃料/高放射性廢料最終處置現況」,行政院原子能委員會核能研究所化工組,1999。
【10】吳禮浩、莊文壽,「KBS-3處置概念之緩衝與回填材料」,INER-3028,行政院原子能委員會核能研究所化學工程組,2004。
【11】台電公司,全程工作規劃書(2000年版),台電公司,2000。
【12】Selvadurai, A.P.S., and Nguyen, T.S., ”Scoping analyses of the coupled thermal-hydrological-mechanical behavior of the rockmass around a nuclear fuel waste respository”, Engineering Geology,Vol.47, p.379 -400 ,1996.
【13】SKB, ”Final Storage of Spent Nuclear Fuel”, KBS, Stockholm, Sweden, May 1983.
【14】SKB, ”Deep Repository for Spent Nuclear Fuel: SR 97 Post-Closure Safety”, KBS, Sweden, November 1999.
【15】蔡世欽,「深層地質處置概念熱效應與處置坑道配置之分析(期中
報告初稿)」,我國用過核燃料長程處置潛在母岩特性調查於評估
階段發展初步功能/安全評估模式(第一年計畫),2001。
【16】Thunvik, R. and Braester, C., “Heat propagation from a radioactive waste repository-Complementary calculations for the SKB 91 reference canister”, SKB Working Report TR 91-17,Sweden,1991.
【17】戴豪君,「深層岩體熱力—水力—力學耦合行為之初步研究」,國立成功大學資源工程學系碩士論文,臺南,2002。
【18】蘇依豪,「最終處置場緩衝材料地下水入侵模擬研究」,國立中央大學土木工程研究所碩士論文,中壢,2005。
【19】蔡昭明,「放射性廢料安全管制報告書」,放射性待處理物料管理處,1994。
【20】核能研究所網站, http://www.iner.gov.tw/。
【21】SKB,”Final Disposal of spent Nuclear Fuel, Important of the Bedrock for Safety”, SKB Technical Report 92-20, Sweden, 1991.
【22】ABAQUS Documentation, ABAQUS Benchmarks Manual 1.8.3., ABAQUS 6.6-1 User’s Manual.
【23】方虹郡、吳禮浩,「低放射性廢棄物處置安全因素分析研究—瑞典經驗」,INER-2779,行政院原子能委員會核能研究所,2004。
【24】Bear, J., Dynamics of Fluids in Porous Media, American Elsevier Publishing Company, Dover, New York,1972.
【25】曾依淑,「用過核燃料地下處置場熱水力耦合作用對工程障壁飽和度影響分析」,國立中央大學土木工程研究所碩士論文,97年。
【26】陳朝旭,「用過核廢料深層地下處置設計之研究」,國立中央大學土木工程研究所碩士論文,2002。
【27】JCN, H12-Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan, Japan nuclear Cycle Development Institute, April 2000.
【28】Ove Stephansson, John A. Hudson, Lanru Jing“Coupled Thermal-Hydro-Mechanical-Chemical Processes in Geo- Systems”, Elsevier Geo-Engineering Book Series VOLUME 2, First Edition, 2004.
【29】謝馨輝,「核廢料地下處置之熱傳導及初步熱應變分析」,國立中
央大學土木工程研究所碩士論文,2003。
【30】劉道穎,緩衝材料於飽和狀態下熱-水力耦合作用試驗結果之數值驗證與分析,國立中央大學土木工程研究所碩士論文,97年。
【31】潘以文,「極深覆岩隧道周圍岩盤之溫度與熱應力場」,2000岩盤工程研討會,2000。
【32】Lennart Börgesson, Billy Fälth, Jan Hernelind,” Water
saturation phase of the buffer and backfill in the KBS-3V concept”,SKB concept”Technical Report TR-06-14, August, 2006.