| 研究生: |
徐嘉仁 Chia-Jen Hsu |
|---|---|
| 論文名稱: |
New RC之T形斷面梁澆鑄介面對耐震行為影響 The Effect of Precast Cold Joint on the Seismic Behavior of New RC Cantilever T-beams |
| 指導教授: |
王勇智
Yung-Chih Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 233 |
| 中文關鍵詞: | 預鑄施工 、T形梁 、高拉力鋼筋 、耐震行為 、交接面剪應力 |
| 外文關鍵詞: | precast, cantilever T-beams, ultra-high-strength steel reinforcement, seismic behavior, frictional shear stress |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是以新型高拉力鋼筋與高強度混凝土材料所製成之New RC T形懸臂梁(a/d=2.4)試體,利用反覆加載實驗來探討存有預鑄施工縫的試體與一體成形的試體在耐震行為上的差異。其中,試體主筋使用#8高拉力SD685MPa螺紋節鋼筋搭配高強度混凝土(60MPa),梁箍筋按規範ACI 318-11耐震設計規定作配置,採用#4高拉力SD785MPa竹節鋼筋。文中除了探討預鑄施工縫在耐震行為影響外,亦探討目前規範與學者之交接面剪應力經驗式在耐震影響之適用性。
由實驗結果得知,存有施工縫的T形梁試體,其整體耐震行為與單一澆鑄T形梁試體相似;但在極限狀態負彎矩有效版寬(即版筋貢獻)調查,存有施工縫的T形梁有效版寬反而大於單一澆鑄試體1.4倍,其結果與先前普通鋼筋混凝土T形懸臂梁耐震測試[2]一樣。各國學者提出的經驗式[7、8、10]與實驗結果相似,而規範經驗式[3、4、5、6]則較保守。
The main objective of the study was to investigate the effect of precast cold joint formed between slab underside and beam web on the seismic behavior of New RC cantilever T-section beams. Two RC short cantilever T-beams (a/d=2.4) were fabricated using ultra-high-strength steel reinforcement (SD685MPa #8 screwed type for main bars, and SD785MPa #4 deformed type for stirrups) and 60MPa high strength concrete. One beam with cold joint and the other beam without cold joint were tested under cyclic loading to observe the difference of seismic performance due to the formation of precast cold joint. Meanwhile, the assess results from empirical equations of frictional shear provided by design codes and previous researches were compared with the test results.
According to experimental results, the overall seismic behavior of the New RC T-beam with precast cold joint resembled the T-beam cast monolithically. However, the effective slab width in negative moment (i.e. the contribution of slab bars) for the beam with cold joint is 1.4 times wider than that for the beam cast monolithically, which is the same conclusion as obtained from the experimental study on the normal RC cantilever T-beams[2]. The values predicted from the equations proposed by the previous researchers [7、8、10] agreed the experimental results well. The assessment attained from code’s equations [3、4、5、6] showed conservative as expected.
[1] J. P. Moehle, J. D. Hooper, C. D. Lubke, “Seismic Design of Reinforced Concrete Special Moment Frames: A Guide for Practicing Engineers” National Institute of Standards and Technology, August 2008 .
[2] 鄭智仁,「預鑄施工梁與版間冷縫對T形斷面梁耐震行為之影響」,國立中央大學,碩士論文,民國一百零一年。
[3] ACI Committee 318, Building Code Requirement for Structural Concrete, ACI318-11 & Commentary, American Concrete Institute, 2011.
[4] 中國土木水利工程學會,混凝土工程設計規範與解說,土木401-100,2011。
[5] CSA Committee A23.3, Design of Concrete Structures for Building, Canadian Standards Association, Canada, 2004.
[6] NZS3101, Concrete Structures Standard, The design of Concrete Structures & Commentary on the Design of Concrete Structures, New Zealand Standard, 2006.
[7] R. E. Loov D. Phil., and A. K. Patnaik, “Horizontal Shear Strength of Composite Concrete Beams with a Rough Interface, ” PCI Journal, Vol.39, No.1, January-February, 1994, pp. 48-68.
[8] L. F. Kahn, and A. D. Mitchell, “Shear Friction Tests with High-Strength Concrete, ” ACI Structural Journal, Vol.99, No.S11, January-February, 2002, pp. 98-103.
[9] L. F. Kahn, and A. Slapkus, “Interface Shear in High Strength Composite T-beams, ” PCI Journal, Vol. 49, No. 4, July-August, 2004, pp. 102-110.
[10] M. A. Ali, R. N. White, “Enhanced Contact Model for Shear Friction of Normal and High-Strength Concrete.” Journal of the American Concrete Institute, May-June 1999, pp.348–361.
[11] M. R. Ehsani, J. K. Wight, “Effect of Transverse Beams and Slab on Behavior of Reinforced Concrete Beam-to-Column Connections.” Journal of the American Concrete Institute, March-April 1985, pp.188–195.
[12] I. K. Fang, C. S. Wang, K. L. Hong, “Cyclic Behavior of High-Strength Concrete Short Beams with Lower Amount of Flexural Reinforcement” Journal of the American Concrete Institute, January-February 1994, pp.10-18.
[13] K. K. Sasaki, T. Paret, J. C. Araiza, and P. Hals, “Failure of Concrete T-Beam and Box-Girder Highway Bridges Subjected to Cyclic Loading form Traffic” Engineering Structures 32, January, 2010, pp. 1838-1845.
[14] S. Kono, H. Tanaka, F. watanabe, “Interface Shear Transfer for High Strength Concrete and High Strength Shear Friction Reinforcement” American Society of Civil Engineers, 2003,pp.319-328.
[15] K. Wille, D. J. Kim, A. E. Naaman, “Strain-hardening UHP-FRC with low fiber contents” Materials and Structures, 2011, pp.583-598.
[16] ACI Committee 374, “Acceptance Criteria for Moment Frames Based on structural Testing and Commentary (ACI 374.1-05),” American Concrete Institute, Farmington Hills, MI, 2005, pp. 1-9.
[17] A.Walker, “Assessment of Material Strain Limits for Defining Different Forms of Plastic Hinge Region in Concrete Structures,” Master Thesis, University of Canterbury, Christchurch, New Zealand.
[18] 王昱升,「高拉力鋼筋混凝土T形斷面梁與版間介面冷縫對整體構件耐震行為影響之研究」,國立中央大學,碩士論文,民國一百零二年。
[19] 余成偉,「高強度鋼筋混凝土梁塑性鉸長度之探討」,國立中央大學,碩士論文,民國一百零二年。
[20] 柯舜文,「不同跨度之T形梁在反覆荷載下有效版寬研究」,國立中央大學,碩士論文,民國一百零二年。