| 研究生: |
章文皇 Bung-Ong Chong |
|---|---|
| 論文名稱: |
鋼筋混凝土三軸拱圍束效應用於補強柱受軸向及撓曲變形之探討 Investigation of Retrofitted RC Columns Subjected to Axial Compression and Flexure by means of Triaxial Arching Effect Model |
| 指導教授: |
王勇智
Yung-Chih Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | FRP 、三軸拱效應 、圍束 、混凝土 |
| 外文關鍵詞: | concrete, Fiber-Reinforced Polymer, triaxial arching effect, confined |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文分兩大部分,第一部分乃利用三軸拱圍束效應之Mander理論模式,分析矩形及圓形斷面短柱外部圍束材圍束時之軸向應力應變關係。第二部分乃利用第一部分所得之圍束混凝土之應力應變關係,進行柱彎矩與側向變位之預測,其中圍束材包括箍筋、FRP及鋼版。在本研究中,發展出一個程式,以Mander之三軸拱圍束模式,計算柱受不同材料圍束時之混凝土應力與應變,然後應用於柱之斷面分析,利用彎矩之曲率面積法求出補強柱之撓曲變形。
研究結果顯示,混凝土受軸壓力膨脹後,其圍束材會對其產生被動圍束,因而產生拱效應,其拱曲線可視為一抛物曲線,此抛物曲線之初始角對柱之承載能力影響很大,故在分析時應慎選拱曲線之初始角(??。利用修正Mander理論分析時,取柏桑比為0.5時,慎選適當?,可以準確預測柱軸向圍束行為,整體分析結果與實驗結果非常吻合,由分析結果得知,雙重材料圍束效果(如箍筋與FRP一起圍束)比單一材料圍束效果佳。在柱撓曲方面,本文只考慮圍束混凝土應力應變之影響,由於柱實際之撓曲變形,亦受固端旋轉及剪力變形之影響,故分析結果外力有高估現象,對於固端旋轉及剪力變形之影響有待後續研究。
There are two parts in this thesis. In first part, a triaxial confined model for evaluating the stress-strain behavior of RC short columns with external confinement is proposed. It''s valid for rectangular and circular section. In the second part, by using the confined concrete stress-strain relationship in the first part, the flexural behavior of the columns is then predicted. In the study, the confining material comprises steel hoop, FRP and steel plate respectively. In this thesis, a computer program was developed to evaluate the RC columns confined with different confining materials basing on the Mender''s triaxial arching confined model, by using the average stress-strain to perform the section analysis, hence apply the moment-curvature area method to the prediction of flexural behavior of columns.
In the investigation of arching effect, concrete columns expend due to the axial compression, hence a passive confinement were activated, induced an arching effect, the arch curve as a parabola, and the initial angle of the parabola have a great influence in the load capacity of the columns. The arching angle of the parabola must be taken care while the analysis is performed. By using the modified Mander confined model, the poisson’s ratio of 0.5, and a suitable arching angle are selected to predict the confined behavior of the columns in a accurate way. As a result of analysis, it found that dual confinement (from hoop and FRP confinement) have a better enhancement in load bearing capacity than the single confinement. However, the experimental result did not agree with the results of flexural analysis well. This is due mainly to the influence of shear and fixed end rotation on not accounting for the prediction. The effect of the shear deformation and fixed end rotation will be followed up in the future.
參考文獻
1. Mander, J. B., Priestley, M. J. N., and Park, R., “Theoretical Stress-Strain Model for Confined Concrete,” Journal of Structural Engineering, Vol. 114, No. 8, pp.1804-1826, August, 1988.
2. Mander, J. B., Priestley, M. J. N., and Park, R., “Observed Stress-Strain Behavior of Confined Concrete,” Journal of Structural Engineering, Vol.114, No.8, pp.1827-1849, August, 1988.
3. Mander, J. B., “Seismic Design of Bridge Piers,” Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 1983.
4. Wang, Y. C., and Restrepo, J. I. “Investigation of Concentrically Loaded Reinforced Concrete Columns Confined with Glass Fiber-Reinforced Polymer Jackets,” ACI Structural Journal, Vol. 98, No. 3, pp.377-385, May-June, 2001.
5. Bentz, E. C., “Response-2000. Reinforced Concrete Sectional Analysis using Modified Compression Field Theory,” Supervised by Professor Michael P. Collins.
6. Cederman, J. “Laterally Loaded Circular Concrete Columns Externally Reinforced with Fiberglass-Epoxy Jackets,” Project No. Civl.97-043, University of Canterbury, Christchurch, New Zealand, June, 1997.
7. Chai, Y. H., “Steel Jacketing of Circular Reinforced Concrete Bridge Columns for Enhanced Flexural Performance,” PH.D. Thesis, University of California, San Diego, 1991.
8. Popovics, S., “A Numerical Approach to the Complete Stress-Strain Curves for Concrete,” Cement and Concrete Research, Vol. 3, No. 5, pp.583-599, 1973.
9. SEQAD Consulting Engineers,“Axial Load Characteristics of Rectangular Columns Wrapped with TYFO-S Jacket,” Report No. 96/04, Prepare for Hexcell Fyfe Inc., Solana Beach, Calif., 1996.
10. Park, R., and Paulay, T., Reinforced Concrete Structures, A Wiley-Interscience Publication, John Wiley & Sons, New York. London. Sydney. Toronto,769pp.
11. Priestley, M. J. N., Seible, F., Calvi, G. M., Seismic Design and Retrofit of Bridges, A Wiley-Interscience Publication, New York: Wiley, 1996.
12. Collins, M. P., Mitchell, D., Prestressed Concrete Structures, Prentice Hall, Englewood Cliffs, NewJersey 07632, 753pp.
13. Fam, A. Z., and Rizkalla, S. H., “Behavior of Axially Loaded Concrete-Filled Circular Fiber-Reinforced Polymer Tubes,” ACI Structural Journal, Vol.98, No.3, pp. 280~289, May-June 2001.
14. Fam, A. Z., and Rizkalla, S. H., “Confinement Model for Axially Loaded Concrete Confined by Circular Fiber-Reinforced Polymer Tubes,” ACI Structural Journal, Vol.98, No.4, pp.451-461, July-August 2001.
15. Fam, A. Z., Flisak, B., and Rizkalla, S. H., “Experimental and Analytical Modeling of Concrete-Filled Fiber-Reinforced Polymer Tubes Subjected to Combined Bending and Axial Loads,” ACI Structural Journal, Vol. 100, No. 4, pp.499-509, July-August, 2003.
16. Mimiran, A., and Shahawy, M., “Behavior of Concrete Columns Confined by Fiber Composites,” Journal of Structural Engineering, Vol. 123, No.5, pp.583-590, May, 1997.
17. Mimiran, A., Shahawy, M., Samaan, M., Echary, H. E., Mastrapa, J. C., and Pico, O., “Effect of Column Parameters on FRP-Confined Concrete,” Journal of Composites for Construction, Vol. 2, No. 4, pp.175-185, November, 1998.
18. Samaan, M., Mimiran A., and Shahawy, M., “Model of Concrete Confined by Fiber Composites,” Journal of Structural Engineering, Vol. 124, No. 9, pp.1025-1029, September, 1998.
19. Chaallal, O., Hassan, M., and Shahawy, M., “Confinement Model for Axially Loaded Short Rectangular Columns Strengthened with Fiber-Reinforced Polymer Wrapping,” ACI Structural Journal, Vol. 100, No. 2, pp.215-221, March-April, 2003.
20. Chaallal, O., Hassan, M., and Shahawy, M., “Performance of Axially Loaded Short Rectangular Columns Strengthened with Carbon Fiber-Reinforced Polymer Wrapping,” Journal of Composites for Construction, Vol. 7, No. 3, pp.200-208, August, 2003.
21. Rochette, P., and Labossiere, P., “Axial Testing of Rectangular Column Models Confined with Composites,” Journal of Composites for Construction, Vol. 4, No. 7, pp.129-136, August, 2000.
22. Martin D. O. S., Russell Q. B., “Design of Circular Thin-Walled Concrete Filled Steel Tubes,” Journal of Structural Engineering, Vol. 126, No. 11, pp.1295-1303, November, 2000.
23. ILKI, A., and KUMBASAR, N., “Compressive behavior of Carbon Fibre Composite jacketed concrete with circular and non-circular cross-section,” Journal of Earthquake Engineering, Vol.7, No.3, pp.381-406, 2003.
24. Parvin, A., and Wang, W., “Behavior of FRP Jacketed Concrete Columns Under Eccentric Loading,” Journal of Composites for Construction, Vol.5, No.3, August, 2003.
25. Hu, H. T., Huang, C. S., Wu, M. H., “Nonlinear Analysis of Axially Loaded Concrete-Filled Tube Columns with Confinement Effect,” Journal of Structural Engineering, Vol.129, No.10, October 1, 2003.
26. Liu, D., Gho, W. M., Yuan, J., “Ultimate capacity of high-strength rectangular concrete-filled steel hollow section stub,” Journal of
Construction Steel Research,59 (2003), pp.1499-1515.
27. Tan, K. H., “Strength Enhancement of Rectangular Reinforced Concrete Columns using Fiber-Reinforced Polymer,” Journal of Composites for Construction, Vol. 6, No. 3, pp.175-183, August, 2002.
28. Bakis, C. E., Bank, L. C., Brown, V. L., Cosenza, E., Davalos, J. F., Lesko, J. J., Machida, A., Rizkalla, S. H., and Triantafillou, T. C., “Fiber-Reinforced Polymer Composites for Construction State-of-the-Art Review,” Journal of Composites for Construction, Vol. 6, No. 2, pp.73-87, May, 2002.
29. Lorenzis, L. D., and Tepfers, R., “Comparative Study of Models on Confinement of Concrete Cylinders with Fiber-Reinforced Polymer Composites,” Journal of Composites for Construction, Vol. 7, No. 3, pp.219-237, August, 2003.
30. Richart, F. E., Brandtzaeg, A., and Brown, R. L., “A Study of the Failure of Concrete Under Combined Compressive Stresses,” Engineering Experimental Station, University of Illinois, Bulletin No. 185 (1928).
31. S806-02, Design and Construction of Building Components with Fibre-Reinforced Polymers.
32. Sheikh, S. A. and Uzumeri, S. M., “Strength and Ductility of Tied Concrete columns,” ASCE, Vol.106, No. ST5, May 1980, pp.1079-1102.
33. Shanmim A. S., and Yau, G., “Seismic Behavior of Concrete Columns Confined with Steel and Fiber-Reinforced Polymers,” ACI Structural Journal, Vol.99, No.1, pp.72-80, January 2002.
34. Xiao, Y., and Ma, R., “Seismic Retrofit of RC Circular Columns Using Prefabricated Composite Jacketing,” Journal of Structural Engineering, Vol.123, No.10, pp.1357-1363, October, 1997.
35. 韓林海,楊有福,「矩形鋼管混凝土軸心受壓構件強度承載力的試驗研究」,土木工程學報, 第34卷 第4期, pp.22~31,2001年8月。
36. 岳清瑞,楊勇新,「碳纖維片材加固修復混凝土結構技術規程」,建築結構,第33卷 第6期,2003年6月。
37. 方倉盛,「RC構架以CFRP補強柱之耐震能力研」,國立台灣大學土木工程學研究所碩士論文,陳清泉教授指導,2002年。
38. 葉芳耀,「碳纖圍束混凝土柱軸壓強度與極限應變之影響因子研究」,國立台灣大學土木工程學研究所博士論文,張國鎮教授指導,2003年。
39. 黃偉智,「貼片補強構件之層間應力分析」,國立中央大學土木工程學研究所博士論文,王仲宇教授指導,2001年。
40. 王仲宇,洪維鈞,林澄政,「矩形鋼筋混凝土橋柱碳纖維包覆耐震補強之實驗與分析」,中國土木水利工程學刊,第十三卷,第一期,pp.71-85,2001年。
41. 洪維鈞,「鋼筋混凝土橋柱碳纖維包覆補強之實驗與分析」,國立中央大學土木工程學研究所碩士論文,王仲宇教授指導,2001。
42. 張宏輔,「鋼筋混凝土矩形橋柱耐震分析與FRP補強之研究」,國立台灣大學土木工程學研究所碩士論文,張國鎮教授指導,1999年。
43. 鍾豐旭,「RC矩形橋柱FRP剪力及搭接耐震補強之研究」,國立台灣大學土木工程學研究所碩士論文,張國鎮教授指導,2000年。
44. 赵彤,刘明國,謝劍,「碳纖維布用干改善斜向受力高強混凝土柱抗震性能的研究」,土木工程學報,第35卷,第三期,pp.13-19,2002年。
45. 余保憲,「即有鋼筋混凝土橋柱耐震行為及耐震補強之試驗與研究」,國立台灣大學土木工程學研究所碩士論文,鐘立來教授、吳賴雲教授指導,2002年。
46. 宋奕穎,「碳纖維複合材料(CFRP)於圓形橋柱剪力破壞耐震補強之研究」,國立台北科技大學土木與防災技術研究所,李有豐教授指導,2000年。