| 研究生: |
洪德昇 Te-sheng Hung |
|---|---|
| 論文名稱: |
一百兆瓦雷射系統之建造與在結構化電漿波導之應用 Construction of a 100-TW laser system and application to a structured plasma waveguide |
| 指導教授: |
陳賜原
Szu-yuan Chen 朱旭新 Hsu-hsin Chu |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 高功率雷射 、啾頻放大 、超連續光譜產生 、電漿波導 、空間波形調製器 |
| 外文關鍵詞: | high-power laser, chirped-pulse amplification, supercon- tinuum generation, plasma waveguide, lspatial light modulator |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在近二十年中,高功率飛秒雷射的發展帶動了許多科學領域的突破,如雷射電漿電子加速器、質子加速器、超短X光脈衝產生等領域。為了產生能量更高,強度更強的脈衝粒子及光子源,除了追求更高的尖峰功率之外,另一種方式則是透過多道或是不同波長的光束對電漿結構做細微調製。在中央大學,我們建造了一套多功能、雙波長的一百兆瓦鈦藍寶石雷射系統。它可以同時提供三道重複率為10 Hz的同步光束,包含二道中心波長約在810 nm及一道利用超連續光譜產生,中心波長可調(870-920 nm)的光束。此雷射的脈衝對比度最高可達2*10^9,並具有良好的時空波形與相位,這些規格使得本雷射系統有能力進行尖端強場物理的研究。除此之外,此雷射系統也用於結構化電漿波導的研究。利用了一道經過液晶空間波形調製器調變後的雷射光做為加工脈衝,我們成功地製造出不同縱向結構的電漿波導,例如最短週期為200 µm的週期性結構,以及最短坡度為100 µm的密度斜坡結構。利用此技術及其可程式化的優勢,將大幅地提升桌上型雷射電漿光子及粒子源的性能。
In the past two decades, the advance of high-power laser technology has led to many scientific breakthroughs such as in laser wakefield electron accelerators, proton accelerators and ultrafast x-ray pulse generation. With the growth of the experimental complexity of laser-plasma interaction, versatile laser system with multiple beams or colors are required. In this thesis, I report the construction of a versatile 100-TW Ti:sapphire laser system, which provides three synchronized parallel beamlines running at 10-Hz repetition rate. The first beamline provides 3.3-J infrared pulses with 30-fs duration and 810-nm central wavelength, corresponding to a peak power of 110 TW. The temporal contrast reaches 4*10^{-10} at − 100-ps timescale. The second beamline provides 450-mJ infrared pulses with 34-fs duration and 805-nm central wavelength, corresponding to a peak power of 13 TW. The third beamline provides 200-mJ infrared pulses with 38-fs duration and tunable wavelength from 870 nm to 920 nm. Its peak power reaches 5.3 TW. All three beams can be focused down to M^2 < 1.3, with more than 72\% enclosed energy in the focal spots. Precise control and manipulation of laser-plasma experiment can be achieved by using such kind of laser with independently-controlled pulse energies, durations, central wavelengths, and relative delays. A structured plasma waveguide is also investigated by utilizing the laser system. Programmable fabrication of longitudinal spatial structures in an optically preformed plasma waveguide was achieved, by using laser machining with a liquid-crystal spatial light modulator. Fabrication of periodic structures with a minimal period of 200 µm and density-ramp structures with a minimal slope length of 100 µm was attained. The technique is useful for the optimization of various laser-plasma-based photon and particle sources.
[1] D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Comm. 56, 219–221 (1985).
[2] P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[3] A. E. Siegman, Lasers (University Science Books, 55D Gate Five
Road, Sausalito, CA 94965, USA, 1986).
[4] D. Du, J. Squier, S. Kane, G. Korn, G. Mourou, C. Bogusch, and C. T. Cotton, “Terawatt ti:sapphire laser with a spheri- cal reflective-optic pulse expander,” Opt. Lett. 20, 2114–2116 (1995).
[5] P. F. Moulton, “Spectroscopic and laser characteristics of ti:al2o3,” J. Opt. Soc. Am. B 3, 125–133 (1986).
[6] M. D. Perry, T. Ditmire, and B. C. Stuart, “Self-phase modu- lation in chirped-pulse amplification,” Opt. Lett. 19, 2149–2151 (1994).
[7] O. A. Konoplev and D. D. Meyerhofer, “Cancellation of -integral accumulation for cpa lasers,” IEEE J. Sel. Top. Quantum Elec- tron. 4, 459–469 (1998).
[8] B. E. Lemoff, C. P. J. Barty, and S. E. Harris, “Femtosecond- pulse-driven, electron-excited xuv lasers in eight-times-ionized noble gases,” Opt. Lett. 19, 569–571 (1994).
[9] S. Sebban, T. Mocek, D. Ros, L. Upcraft, P. Balcou, R. Haroutunian, G. Grillon, B. Rus, A. Klisnick, A. Carillon, G. Jamelot, C. Valentin, A. Rousse, J. P. Rousseau, L. Note- baert, M. Pittman, and D. Hulin, “Demonstration of a ni-like kr optical-field-ionization collisional soft x-ray laser at 32.8 nm,” Phys. Rev. Lett. 89, 253,901 (2002).
[10] T. Mocek, C. M. McKenna, B. Cros, S. Sebban, D. J. Spence, G. Maynard, I. Bettaibi, V. Vorontsov, A. J. Gonsavles, and S. M. Hooker, “Dramatic enhancement of xuv laser output using a multimode gas-filled capillary waveguide,” Phys. Rev. A 71,
013,804 (2005).
[11] H.-H. Chu, H.-E. Tsai, M.-C. Chou, L.-S. Yang, J.-Y. Lin, C.-H.
Lee, J. Wang, and S.-Y. Chen1, “Collisional excitation soft x-ray laser pumped by optical field ionization in a cluster jet,” Phys. Rev. A 71, 061,804 (2005).
[12] M.-C. Chou, P.-H. Lin, C.-A. Lin, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Dramatic enhancement of optical-field-ionization collisional-excitation x-ray lasing by an optically preformed plasma waveguide,” Phys. Rev. Lett. 99, 063,904 (2007).
[13] A. Rundquist, C. G. D. III, Z. Chang, C. Herne, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412–1415 (1998).
[14] J. Seres, E. Seres, A. J.Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Source of coherent kiloelectronvolt x-rays,” Nature
433, 596 (2005).
[15] E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single- cycle nonlinear optics,” Science 320, 1614–1617 (2008).