跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曾冠維
Kuan-Wei Tseng
論文名稱: 蛋白質特定方向固定化-以α-amylase為例
Site-specific Immobilization of α-amylase Protein
指導教授: 阮若屈
Ruoh-Chyu Ruaan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 63
中文關鍵詞: 物理吸附特定方向固定化分子嵌合
外文關鍵詞: physical adsorption, site-specific, immobilization, docking
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蛋白質以隨機的方式固定於固體基材上,常因不適當的位向而使
    蛋白質失去部分活性,影響了蛋白質檢測的精確性。而有特定位向固
    定化的方法中,如在蛋白質N 端或C 端接上一段短鏈組氨酸與金屬
    離子表面專一性的螯合,但這種方法過程複雜、費用高,而且也無法
    得到100%的活性。所以在本研究中,我們發展一種以物理吸附且可
    以有位向性固定化的方法,此方法是在蛋白質活性位置的相反方向依
    蛋白質表面胺基酸的特性及分佈來設計一個結合強度較強的ligand。
    在實驗中,目標蛋白為α-amylase from Aspergillus oryzae, 所使用的
    ligand 為 3,3’,4,4’ - Biphenyltetracarboxylic dianhydride (BPDA)。利用
    分子嵌合的模擬來預測結合位置及結合蛋白質在矽膠體上等溫吸附
    的實驗及活性測試來驗證蛋白質的吸附位向。而TAKA 在BPDA 上
    的解離常數比隨機吸附的值低,約為0.28~0.76×10-6M,且其生物活
    性也比隨機吸附的高,所以證實BPDA 這個基材有效的提升了與蛋
    白質的結合強度和特定位向的吸附,以及分子嵌合對結合位置的預測
    了解蛋白質的吸附位向。


    Random protein immobilization usually suffers from serious loss of
    the specific bioactivity of the immobilized protein. Oriented protein
    immobilization of histidine tagged protein on metal chelating resin does
    not guarantee 100% exposure of the active site. In this study, we develop
    a new method for oriented immobilization. Design an affinity ligand
    according to the characteristic and distribution of amino acids at the
    opposite to the active site. The target protein is α-amylase from
    Aspergillus oryzae, and the searched ligand is 3,3’,4,4’ -
    Biphenyltetracarboxylic dianhydride (BPDA). We predict the possible
    binding sites by using molecular dockikng. And at the experiments, we
    attach BPDA to the surface of silica gel and via isotherm adsorb and
    bioactivity assay show oriented immobilization owns superior specific
    activity than random immobilization.

    摘要................................................................................................................................ I Abstract ......................................................................................................................... II 誌謝.............................................................................................................................. III 目錄.............................................................................................................................. IV 圖目錄........................................................................................................................ VII 表目錄.......................................................................................................................... IX 第一章 緒論 .............................................................................................................. 1 1.1 研究動機 .............................................................................................................. 1 1.2 研究目的 .............................................................................................................. 2 第二章 文獻回顧 ...................................................................................................... 3 2.1 蛋白質固定化 ...................................................................................................... 3 2.1.1 共價鍵結 (covalent binding) ............................................................................. 3 2.1.2 生物親和性 (bioaffinity) ................................................................................... 5 2.1.2.1 protein A or protein G ........................................................................... 5 2.1.2.2 生物素鍵結(biotin-binding) ................................................................. 6 2.1.2.3 標籤(tags) .............................................................................................. 7 2.1.3 物理吸附 ............................................................................................................ 8 2.1.3.1 等溫吸附曲線 ....................................................................................... 9 2.2 蛋白質的吸附位向 ............................................................................................ 12 2.3 分子嵌合 ............................................................................................................ 14 2.3.1 分子嵌合介紹 .................................................................................................. 14 2.3.2Autodock ............................................................................................................ 15 2.4 澱粉分解酶介紹 ................................................................................................ 18 第三章 實驗設備、藥品、方法 ............................................................................ 20 3.1 實驗藥品 ............................................................................................................ 20 3.2 實驗設備 ............................................................................................................ 21 3.3 實驗方法 ............................................................................................................ 22 3.3.1 基材表面改質 .................................................................................................. 22 3.3.1.1 表面胺基改質 ..................................................................................... 23 3.3.1.2 Ligand 接枝 ........................................................................................ 23 3.3.1.3 琥珀酸酐阻隔(blocking) .................................................................... 23 3.3.2 蛋白質吸附曲線 .............................................................................................. 24 3.3.3 蛋白質活性測定 .............................................................................................. 25 3.3.3.1 測量原理 ............................................................................................. 25 3.3.3.2 操作方法 ............................................................................................. 26 3.3.4 吸附後蛋白質穩定性 ...................................................................................... 26 3.3.5 蛋白質濃度測定-Bradford method ............................................................... 27 3.3.5.1 Bradford 方法 .................................................................................... 27 3.3.5.2 測量方法 ............................................................................................. 27 第四章 結果與討論 ................................................................................................ 28 4.1 Ligand 設計 ....................................................................................................... 28 4.1.1 TAKA 活性位置電荷分析 ......................................................................... 28 4.1.2 苯環對TAKA 的嵌合分析 ........................................................................ 29 4.1.3 Ligand 的設計 ............................................................................................. 31 4.2 分子嵌合 – 預測TAKA 與BPDAcp 的結合位置 ......................................... 33 4.3TAKA 與BPDA 在水相的活性測試 .................................................................. 37 4.4 Ligand 接枝於矽膠體表面 ............................................................................... 38 4.5 TAKA 於不同基材表面的等溫吸附實驗 ........................................................ 38 4.6 蛋白質吸附後活性測試...................................................................................... 41 4.7 TAKA 在不同pH 值及鹽濃度下的穩定度 ....................................................... 42 4.8 TAKA 的吸附位向 ............................................................................................ 43 第五章 結論 ............................................................................................................ 45 參考文獻...................................................................................................................... 47 附錄.............................................................................................................................. 52

    Bilitewski, U., Protein-sensing assay formats and devices.
    Analytica Chimica Acta, 2006. 568(1-2): p. 232-247.
    2. Rusmini, F., Z.Y. Zhong, and J. Feijen, Protein immobilization
    strategies for protein biochips. Biomacromolecules, 2007. 8(6): p.
    1775-1789.
    3. Silvia Ferretti, S.P., David A. Russell, Kim E. Sapsford,
    Self-assembled monolayers: a versatile tool for the formulation of
    bio-surfaces. trends in analytical chemistry, 2000. 19: p. 530-540.
    4. Karin Busch, R.T., Single molecule research on surfaces: from
    analytics to construction and back. Reviews in Molecular
    Biotechnology, 2001. 82: p. 3-24.
    5. Jo Tominagaa, N.K., Satoshi Doia, Hirofumi Ichinoseb, Masahiro
    Gotoa, An enzymatic strategy for site-specific immobilization of
    functional proteins using microbial transglutaminase. Enzyme and
    Microbial Technology, 2004. 35: p. 613-618.
    6. Cesar Mateo, G.F.n.-L., Olga Abian, Roberto Ferna´ndez-Lafuente,
    and and J.M. Guisa´n*, Multifunctional Epoxy Supports: A New
    Tool To Improve the Covalent Immobilization of Proteins. The
    Promotion of Physical Adsorptions of Proteins on the Supports
    before Their Covalent Linkage. Biomacromolecules, 2000. 1: p.
    739-745.
    7. Bilitewski, U., Protein-sensing assay formats and devices.
    48
    Analytica Chimica Acta, 2006. 568: p. 232-247.
    8. Mathias Uhlen$QlI, B.G., Bjorn NilssonSStTeni, Gatenbeck$,
    LennarPt hilipsonQII, and and M. Lindberg$*, Complete Sequence
    of the Staphylococcal Gene EncodinPg rotein A. THE
    JOURNAOFL BIOLOGICAL CHEMISTRY, 1984. 259: p.
    1695-1702.
    9. Youngeun Kwon, Z.H., Ece Karatan, Milan Mrksich, and Brian K.
    Kay, Antibody Arrays Prepared by Cutinase-Mediated
    Immobilization on Self-Assembled Monolayers. Anal. Chem.,
    2004. 76: p. 5713-5720.
    10. Hsiu-Mei Chen, W.-C.W., and Sheng-Horng Chen, A
    Metal-Chelating Piezoelectric Sensor Chip for Direct Detection
    and Oriented Immobilization of PolyHis-Tagged Proteins.
    Biotechnol. Prog., 2004. 20: p. 1237-1244.
    11. Naoufel Haddour, S.C., * and Chantal Gondran, Electrogeneration
    of a Poly(pyrrole)-NTA Chelator Film for a Reversible Oriented
    Immobilization of Histidine-Tagged Proteins. J. AM. CHEM. SOC.,
    2005. 127: p. 5752-5753.
    12. Schmid, E.L., et al., Reversible oriented surface immobilization of
    functional proteins on oxide surfaces. Analytical Chemistry, 1997.
    69(11): p. 1979-1985.
    13. Cesar Mateo, O.A., Roberto Fernandez-Lafuente, Jose M. Guisan,
    Reversible Enzyme Immobilization via a Very Strong and
    49
    Nondistorting Ionic Adsorption on Support– Polyethylenimine
    Composites. BIOTECHNOLOGY AND BIOENGINEERING,,
    2000. 68.
    14. 李獻欽, 戴., 運用Y 型疏水性沸石去除甲苯及醋酸丁酯之吸附
    及脫附能力與其影響機制. 國立雲林科技大學環境與安全衛生
    工系學刊, 2005. 第六期: p. 1-11.
    15. 秦靜如, 奈米碳管酸純化前後表面特性之變化. 國立中央大學
    環境工程所, 2005.
    16. 黃富昌, 土壤結構及化性對有機污染物吸/脫弣特性之研究. 國
    立中央大學環境工程所, 2004.
    17. Fu-Feng Liu, T.W., Xiao-Yan Dong, Yan Sun, Rational design of
    affinity peptide ligand by flexible docking simulation. Journal of
    Chromatography A, 2007. 1146: p. 41-50.
    18. L. Fernando Bautista, M.M., ´ and Jos´e Aracil, Adsorption
    Equilibrium of a-Amylase in Aqueous Solutions. AIChE Journal,
    1999. 45: p. 761-768.
    19. Shengfu Chen, L.L., Jian Zhou, and Shaoyi Jiang, Controlling
    Antibody Orientation on Charged Self-Assembled Monolayers.
    Langmuir, 2003. 19: p. 2859-2864.
    20. Pis¸kin, G.D.Æ.M.O.C.a.l.Æ.B.G.Æ.M.D.Æ.E., Oriented
    immobilization of IgG on hydroxylated Si(001) surfaces via
    protein-A by a multiple-step process based on a self-assembly
    approach. J Mater Sci, 2007. 42: p. 9402-9408.
    50
    21. Florian Dismer, J.u.H., A novel approach to characterize the
    binding orientation of lysozyme on ion-exchange resins. Journal of
    Chromatography A, 2007. 1149: p. 312-320.
    22. AmirAli H. Talasaz*, M.N.-G., Yang Liu*, Patrik Ståhl, Robert W.
    Dutton*, Mostafa Ronaghi, and a.R.W. Davis, Prediction of protein
    orientation upon immobilization on biological and nonbiological
    surfaces. PNAS, 2006. 103: p. 14773-14778.
    23. Inbal Halperin, B.M., HaimWolfson, and Ruth Nussinov, Principles
    of Docking: An Overviewof Search Algorithms and a Guide to
    Scoring Functions. PROTEINS: Structure, Function, and Genetics,
    2002. 47: p. 409-443.
    24. 林榮信, 計算統計物理與藥物設計. 物理雙月刊, 2007. 廿九卷:
    p. 920-928.
    25. Goldblum*, B.G.a.A., High quality binding modes in docking
    ligands to proteins. Proteins, 2008. 71: p. 1373–1386.
    26. JEREMY KUA, Y.Z., ANGELIQUE C. ESLAMI, JOHN R.
    BUTLER, AND and J.A. MCCAMMON, Studying the roles of
    W86, E202, and Y337 in binding of acetylcholine to
    acetylcholinesterase using a combined molecular dynamics and
    multiple docking approach. Protein Science, 2003. 12: p.
    2675-2684.
    27. Mantsiila, M.V.a.P., Microbial Amylolytic Enzymes. Critical
    Reviews in Biochemistry and Molecular Biology, 1989. 24: p.
    51
    329-418.
    28. A.A. Saboury*, F.K., Thermodynamic studies on the interaction of
    calcium ions with alpha-amylase. Thermochimica Acta, 2000. 362:
    p. 121-129.
    29. Roman Buckow, U.W., Volker Heinz, Dietrich Knorr, Stability and
    Catalytic Activity of a-Amylase From Barley Malt at Different
    Pressure–Temperature Conditions. Biotechnology and
    Bioengineering, 2007. 97: p. 1-11.
    30. HELEN J. SWIFT, L.B., ZYGMUNT S. DEREWENDA,
    ELEANOR J. DODSON, GUY G. DODSON, and J.P.T.A.A.J.
    WILKINSON, Structure and Molecular Model Refinement of
    Aspergillus oryzae (TAKA) a-Amylase: an Application of the
    Simulated-Annealing Method. Acta Cryst., 1991. B47: p. 535-544.
    31. Ali Kara a, B.O.a., Handan Yavuz b, Necati Besirli a, Adil Denizli,
    Immobilization of a-amylase on Cu2+ chelated poly(ethylene
    glycol dimethacrylate-n-vinyl imidazole) matrix via adsorption.
    Reactive & Functional Polymers, 2005. 62: p. 61-68.

    QR CODE
    :::