| 研究生: |
曾冠維 Kuan-Wei Tseng |
|---|---|
| 論文名稱: |
蛋白質特定方向固定化-以α-amylase為例 Site-specific Immobilization of α-amylase Protein |
| 指導教授: |
阮若屈
Ruoh-Chyu Ruaan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 物理吸附 、特定方向 、固定化 、分子嵌合 |
| 外文關鍵詞: | physical adsorption, site-specific, immobilization, docking |
| 相關次數: | 點閱:3 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蛋白質以隨機的方式固定於固體基材上,常因不適當的位向而使
蛋白質失去部分活性,影響了蛋白質檢測的精確性。而有特定位向固
定化的方法中,如在蛋白質N 端或C 端接上一段短鏈組氨酸與金屬
離子表面專一性的螯合,但這種方法過程複雜、費用高,而且也無法
得到100%的活性。所以在本研究中,我們發展一種以物理吸附且可
以有位向性固定化的方法,此方法是在蛋白質活性位置的相反方向依
蛋白質表面胺基酸的特性及分佈來設計一個結合強度較強的ligand。
在實驗中,目標蛋白為α-amylase from Aspergillus oryzae, 所使用的
ligand 為 3,3’,4,4’ - Biphenyltetracarboxylic dianhydride (BPDA)。利用
分子嵌合的模擬來預測結合位置及結合蛋白質在矽膠體上等溫吸附
的實驗及活性測試來驗證蛋白質的吸附位向。而TAKA 在BPDA 上
的解離常數比隨機吸附的值低,約為0.28~0.76×10-6M,且其生物活
性也比隨機吸附的高,所以證實BPDA 這個基材有效的提升了與蛋
白質的結合強度和特定位向的吸附,以及分子嵌合對結合位置的預測
了解蛋白質的吸附位向。
Random protein immobilization usually suffers from serious loss of
the specific bioactivity of the immobilized protein. Oriented protein
immobilization of histidine tagged protein on metal chelating resin does
not guarantee 100% exposure of the active site. In this study, we develop
a new method for oriented immobilization. Design an affinity ligand
according to the characteristic and distribution of amino acids at the
opposite to the active site. The target protein is α-amylase from
Aspergillus oryzae, and the searched ligand is 3,3’,4,4’ -
Biphenyltetracarboxylic dianhydride (BPDA). We predict the possible
binding sites by using molecular dockikng. And at the experiments, we
attach BPDA to the surface of silica gel and via isotherm adsorb and
bioactivity assay show oriented immobilization owns superior specific
activity than random immobilization.
Bilitewski, U., Protein-sensing assay formats and devices.
Analytica Chimica Acta, 2006. 568(1-2): p. 232-247.
2. Rusmini, F., Z.Y. Zhong, and J. Feijen, Protein immobilization
strategies for protein biochips. Biomacromolecules, 2007. 8(6): p.
1775-1789.
3. Silvia Ferretti, S.P., David A. Russell, Kim E. Sapsford,
Self-assembled monolayers: a versatile tool for the formulation of
bio-surfaces. trends in analytical chemistry, 2000. 19: p. 530-540.
4. Karin Busch, R.T., Single molecule research on surfaces: from
analytics to construction and back. Reviews in Molecular
Biotechnology, 2001. 82: p. 3-24.
5. Jo Tominagaa, N.K., Satoshi Doia, Hirofumi Ichinoseb, Masahiro
Gotoa, An enzymatic strategy for site-specific immobilization of
functional proteins using microbial transglutaminase. Enzyme and
Microbial Technology, 2004. 35: p. 613-618.
6. Cesar Mateo, G.F.n.-L., Olga Abian, Roberto Ferna´ndez-Lafuente,
and and J.M. Guisa´n*, Multifunctional Epoxy Supports: A New
Tool To Improve the Covalent Immobilization of Proteins. The
Promotion of Physical Adsorptions of Proteins on the Supports
before Their Covalent Linkage. Biomacromolecules, 2000. 1: p.
739-745.
7. Bilitewski, U., Protein-sensing assay formats and devices.
48
Analytica Chimica Acta, 2006. 568: p. 232-247.
8. Mathias Uhlen$QlI, B.G., Bjorn NilssonSStTeni, Gatenbeck$,
LennarPt hilipsonQII, and and M. Lindberg$*, Complete Sequence
of the Staphylococcal Gene EncodinPg rotein A. THE
JOURNAOFL BIOLOGICAL CHEMISTRY, 1984. 259: p.
1695-1702.
9. Youngeun Kwon, Z.H., Ece Karatan, Milan Mrksich, and Brian K.
Kay, Antibody Arrays Prepared by Cutinase-Mediated
Immobilization on Self-Assembled Monolayers. Anal. Chem.,
2004. 76: p. 5713-5720.
10. Hsiu-Mei Chen, W.-C.W., and Sheng-Horng Chen, A
Metal-Chelating Piezoelectric Sensor Chip for Direct Detection
and Oriented Immobilization of PolyHis-Tagged Proteins.
Biotechnol. Prog., 2004. 20: p. 1237-1244.
11. Naoufel Haddour, S.C., * and Chantal Gondran, Electrogeneration
of a Poly(pyrrole)-NTA Chelator Film for a Reversible Oriented
Immobilization of Histidine-Tagged Proteins. J. AM. CHEM. SOC.,
2005. 127: p. 5752-5753.
12. Schmid, E.L., et al., Reversible oriented surface immobilization of
functional proteins on oxide surfaces. Analytical Chemistry, 1997.
69(11): p. 1979-1985.
13. Cesar Mateo, O.A., Roberto Fernandez-Lafuente, Jose M. Guisan,
Reversible Enzyme Immobilization via a Very Strong and
49
Nondistorting Ionic Adsorption on Support– Polyethylenimine
Composites. BIOTECHNOLOGY AND BIOENGINEERING,,
2000. 68.
14. 李獻欽, 戴., 運用Y 型疏水性沸石去除甲苯及醋酸丁酯之吸附
及脫附能力與其影響機制. 國立雲林科技大學環境與安全衛生
工系學刊, 2005. 第六期: p. 1-11.
15. 秦靜如, 奈米碳管酸純化前後表面特性之變化. 國立中央大學
環境工程所, 2005.
16. 黃富昌, 土壤結構及化性對有機污染物吸/脫弣特性之研究. 國
立中央大學環境工程所, 2004.
17. Fu-Feng Liu, T.W., Xiao-Yan Dong, Yan Sun, Rational design of
affinity peptide ligand by flexible docking simulation. Journal of
Chromatography A, 2007. 1146: p. 41-50.
18. L. Fernando Bautista, M.M., ´ and Jos´e Aracil, Adsorption
Equilibrium of a-Amylase in Aqueous Solutions. AIChE Journal,
1999. 45: p. 761-768.
19. Shengfu Chen, L.L., Jian Zhou, and Shaoyi Jiang, Controlling
Antibody Orientation on Charged Self-Assembled Monolayers.
Langmuir, 2003. 19: p. 2859-2864.
20. Pis¸kin, G.D.Æ.M.O.C.a.l.Æ.B.G.Æ.M.D.Æ.E., Oriented
immobilization of IgG on hydroxylated Si(001) surfaces via
protein-A by a multiple-step process based on a self-assembly
approach. J Mater Sci, 2007. 42: p. 9402-9408.
50
21. Florian Dismer, J.u.H., A novel approach to characterize the
binding orientation of lysozyme on ion-exchange resins. Journal of
Chromatography A, 2007. 1149: p. 312-320.
22. AmirAli H. Talasaz*, M.N.-G., Yang Liu*, Patrik Ståhl, Robert W.
Dutton*, Mostafa Ronaghi, and a.R.W. Davis, Prediction of protein
orientation upon immobilization on biological and nonbiological
surfaces. PNAS, 2006. 103: p. 14773-14778.
23. Inbal Halperin, B.M., HaimWolfson, and Ruth Nussinov, Principles
of Docking: An Overviewof Search Algorithms and a Guide to
Scoring Functions. PROTEINS: Structure, Function, and Genetics,
2002. 47: p. 409-443.
24. 林榮信, 計算統計物理與藥物設計. 物理雙月刊, 2007. 廿九卷:
p. 920-928.
25. Goldblum*, B.G.a.A., High quality binding modes in docking
ligands to proteins. Proteins, 2008. 71: p. 1373–1386.
26. JEREMY KUA, Y.Z., ANGELIQUE C. ESLAMI, JOHN R.
BUTLER, AND and J.A. MCCAMMON, Studying the roles of
W86, E202, and Y337 in binding of acetylcholine to
acetylcholinesterase using a combined molecular dynamics and
multiple docking approach. Protein Science, 2003. 12: p.
2675-2684.
27. Mantsiila, M.V.a.P., Microbial Amylolytic Enzymes. Critical
Reviews in Biochemistry and Molecular Biology, 1989. 24: p.
51
329-418.
28. A.A. Saboury*, F.K., Thermodynamic studies on the interaction of
calcium ions with alpha-amylase. Thermochimica Acta, 2000. 362:
p. 121-129.
29. Roman Buckow, U.W., Volker Heinz, Dietrich Knorr, Stability and
Catalytic Activity of a-Amylase From Barley Malt at Different
Pressure–Temperature Conditions. Biotechnology and
Bioengineering, 2007. 97: p. 1-11.
30. HELEN J. SWIFT, L.B., ZYGMUNT S. DEREWENDA,
ELEANOR J. DODSON, GUY G. DODSON, and J.P.T.A.A.J.
WILKINSON, Structure and Molecular Model Refinement of
Aspergillus oryzae (TAKA) a-Amylase: an Application of the
Simulated-Annealing Method. Acta Cryst., 1991. B47: p. 535-544.
31. Ali Kara a, B.O.a., Handan Yavuz b, Necati Besirli a, Adil Denizli,
Immobilization of a-amylase on Cu2+ chelated poly(ethylene
glycol dimethacrylate-n-vinyl imidazole) matrix via adsorption.
Reactive & Functional Polymers, 2005. 62: p. 61-68.