跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王冠儒
Kuan-Ju Wang
論文名稱: 以電子分佈探討5 nm銀顆粒之熱縮現象
指導教授: 李文献
Wen-Hsien Li
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 55
中文關鍵詞: 奈米顆粒負熱膨漲電子分佈圖
外文關鍵詞: nanoparticle, negative thermal expansion, charge distribution map
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多數物質會隨著溫度上升產生熱膨脹,而物質的負熱膨脹現象即所謂熱縮現象卻也不罕見,但這現象多出自於非均向性結構,而均向性結構的熱縮也往往伴隨結構的改變,最廣為人知便是液態水在4°C以下的熱縮現象,而這熱縮現象也是由於水分子鍵角改變所致。在本實驗室2002年論文中亦曾發現4 nm金顆粒的熱縮現象[1],並用量子尺度效應解釋,而在之後楊仲準教授亦在2006實驗中發現Ag奈米顆粒(NPs)的熱縮現象。
    在本論文中,將使用楊仲準教授所做變溫X光繞射數據做晶格常數以及電子分佈分析,首先我們在粒徑小至5 nm Ag NPs發現在10至60 K熱縮現象,並且在5 nm 與9 nm Ag NPs中皆發現異常熱膨脹。論文下半部分我計算電子分佈的變化以觀察熱縮現象發生時相應的變化,發現5 nm Ag NPs隨熱縮發生電子向外層轉移,並在轉變為熱膨脹後回到Ag離子內層的現象。


    Most substances will thermally expand with increasing temperature, but the phenomenon of negative thermal expansion of substances, the so-called thermal contraction, is not uncommon. This phenomenon is mostly caused by anisotropic structures, and the thermal contraction of isotropic structures is often accompanied by structural change. The most widely known thermal contraction is the thermal contraction of liquid water below 4°C, which is also due to the change in the bond angle of water molecules. In the 2002 paper of this laboratory, the thermal contraction of 4 nm gold nanoparticles was also found [1], which was explained by the quantum scale effect. Later, the Professor Chun-Chuen Yang also discovered the thermal contraction of silver nanoparticles in the 2006 experiment.
    In this thesis, the temperature define X-ray diffraction data made by Professor Chun-Chuen Yang will be used for lattice constant and electron distribution analysis. First, we found that the thermal contraction at 10 to 60 K in Ag NPs with a particle size as small as 5 nm, and the abnormal thermal expansion in both 5 nm and 9 nm samples . In the second half of the thesis, I calculated the changes of the electron distribution to observe the corresponding changes when thermal contraction happened, and found that 5 nm Ag NPs transfer electrons to the outer layer when thermal contraction happened then returns to the inner layer of the Ag ion after thermal expansion.

    論文摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 簡介 1 1-1 塊材Ag物理性質 1 1-2 奈米顆粒物理性質 2 1-3 Au NPs熱縮實驗回顧 4 第二章 樣品製備與實驗儀器 6 2-1 Ag NPs製備 6 2-2 X光繞射光譜學 8 2-3 變溫X光繞射實驗架設 10 第三章 晶格常數分析 12 3-1 GSAS簡介 12 3-2 粒徑分析方法 13 3-3 塊材Ag之GSAS分析及晶格常數變化 16 3-4 Ag NPs的熱縮以及異常熱膨脹現象 19 第四章 電子分佈對晶格常數影響 27 4-1 以GSAS計算電子密度 27 4-2 5 nm Ag NPs熱縮與電子分佈關係 28 4-3 5 nm Ag NPs異常熱膨脹與電子分佈關係 36 4-4 9 nm Ag NPs異常熱膨脹與電子分佈關係 39 第五章 結論 41 參考文獻 42  

    [1] W.-H. Li, S.Y.Wu, C. C. Yang, S. K. Lai, K.C.Lee, H. L. Huang and H. D. Yang, ”Thermal Contraction of Au Nanoparticles” Phys.Rev.Lett 89.135504, 2002
    [2] N. N. Greenwood, A. Earnshaw, ”Chemistry of the Elements” 2012, p.1173–1174
    [3] Serenella Medici, Massimiliano Peana, Valeria M. Nurchi, and Maria Antonietta Zoroddu, ” Medical Uses of Silver: History, Myths, and Scientific Evidence” J. Med. Chem. 2019, 62, 13, p.5923–5943
    [4] Juris Meija,et al., ”Atomic weights of the elements 2013” Pure Appl. Chem. 2016, 88(3), p.265–291
    [5] 林元媛:〈粒徑大小對奈米銀自發磁性之影響〉碩士論文,國立中央大學,民國102年6月
    [6] Alan Russell, Kok Loong Lee, ”Structure-property relations in nonferrous metals” , 2005, p.321
    [7] Wen-Hsien Li and Chi-Hung Lee, ”Spin Polarization and Small Size Effect in Bare Silver Nanoparticles” Complex Magnetic Nanostructures, 2017, p.195–225
    [8] 蘇志杰:〈奈米粉粒的熱縮現象〉,碩士論文,國立中央大學,民國92年6月
    [9] 楊仲準,X 光繞射分析技術與應用,科儀新知第三十二卷第六期,民國100年6月,64–72頁
    [10] BL01C2 - Powder and Fiber X-ray Diffraction Technical Information,取自:http://efd.nsrrc.org.tw/EFD.php?num=237
    [11] H. M. Rietveld, ” J. Appl. Cryst.” 1969, p.65–71
    [12] 許樹恩、吳泰伯,X光繞射原理與材料結構分析,國科會精儀中心,民國82年
    [13] 戴士傑:〈磷摻雜對鐵基超導材料LaOFeAs1-xPx中電子分佈的影響〉碩士論文,國立中央大學,民國106年6月

    QR CODE
    :::