| 研究生: |
廖凱貞 Kai-Chen Liao |
|---|---|
| 論文名稱: |
雙炔基分子於不同基材表面薄膜結構及其聚合反應性研究與其場效電晶體試製 Structure and polymerization properties of molecular films of diacetylenic derivatives on various surfaces: attempted application in field effect transistors |
| 指導教授: |
陶雨臺
Yu-Tia Tao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 有機場效電晶體 、自組裝薄膜 、雙炔基分子 |
| 外文關鍵詞: | polydiacetylene, self-assemble monolayer, topochemical polymerization |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究主要分為兩個部分,第一個部分為雙炔基有機酸分子(diacetylenic acid) 與雙炔基三氯矽烷分子(diacetylenic trichlorosilane)分別在銀、鋁表面與二氧化矽表面的自組單分子薄膜,藉由紅外線光譜分析與拉曼光譜、近緣X光吸收微組態光譜(NEXAFS)和UV吸收光譜分析結構及其topochemical聚合反應性。第二部分則是以真空蒸鍍方式將雙炔基有機酸蒸鍍於二氧化矽表面、壬烷基三氯矽烷(NTS)單層膜及刷磨過的壬烷基三氯矽烷單層膜上,藉由紅外線光譜、原子力顯微鏡及X光繞射儀觀察有機膜之表面型態與分子排列;並以之為通道材料製成有機場效電晶體元件,量測與評估元件的效果。
第一部分的研究結果顯示,照光聚合反應僅發生於銀表面的雙炔基有機酸單分子層,可能是該分子在銀和鋁的表面鍵結型態不同,造成分子間距離與分子鏈傾斜程度的差異。而NEXAFs分析結果發現,在表面經刷磨的處理會有利於分子傾向某一方向的排列。另外,在二氧化矽表面測量聚雙炔基矽烷自組裝單分子膜不同方向的電性,顯示在刷膜方向與源極-汲極方向平行時,其導電性性質比垂直方向電流大108倍,電流可達10-4A。第二部份的研究中,藉由紅外線光譜和原子力顯微鏡表面分析,我們發現雙炔基有機酸在二氧化矽表面和壬烷基三氯矽烷單層膜上應是以氫鍵結合的雙體站立的方式在表面堆疊;另外,當基材溫度增加,分子在表面的移動性提高,影響蒸鍍薄膜形貌與晶粒大小。在三種表面中,唯有在刷磨的壬烷基三氯矽烷單層膜上,刷磨方向與源極-汲極方向平行時,會有較好的場效現象,其他則無。
The thesis is divided into two parts. One is about self-assemble monolayer(SAM) of diacetylenic acid on silver and aluminum and diacetylenic trichlorosilane on silicon oxide surface. Their packing structure and topochemical polymerization behavior were investigated by Infraed Spectroscopy (IR), Raman Spectroscopy, Ultraviolet-visible spectroscopy(UV) and Near Edge X-ray Absorption Fine Structure Spectroscopy(NEXAFS). The second part is about the deposition and polymerization of diacetylenic acid films on silicon oxide surface and SAM-modified silicon oxide surfaces. These films were studied by IR, UV, Atomic Force Microscopy(AFM), Powder X-ray Diffraction (XRD). Field effect transistors based on these films as channel material were prepared and evaluated.
In the first part, topochemical polymerization was observed only for SAMs prepared on Ag surface, not on Al surface, probably due to different intermolecular distances and extent of chain tilt of diacetylenic acid adsorbed on two surfaces. Rubbing of the monolayer resulted in in-plane orientation preference in the packing. The electrical property of self-assemble monolayer of diacetylenylsilane on silicon oxide surface was measured to exhibit orientation-dependent conductance such that the conductivity along the rubbing direction is 108 times higher than that perpendicular to the rubbing direction.
In the second part, the deposited film of diacetylenic acid consists of layers of H-bonded dimmers oriented nearly perpendicular to the surface. The morphology depends strongly on the substrate temperature. FET devices based on the diacetylenic acid films as channel material showed gating effect only for films deposited on rubbed NTS-SiO2 surface at 50?C along the rubbing direction.
1. Xiao, K.; Liu, Y.; Guo, Y.; Yu, G.; Wan, L.; Zhu, D. “Influence of self-assembly monolayers on ghe characteristics of copper phthalacyanine thin film transistor.” Appl. Phys. A 2003.
2. Cui, J.; Huang, Q. L.; Wang, Q. W.; Marks, T. J. Langmuir 2001, 17, 2051.
3. Kymissis, I.; Dimitrakopoulos, C. D.; Purushothaman, S. IEEE Trans. Electron Devices 2001, 48, 1060.
4. Wegner, G., Z. Naturforsch 1969, 24, 824.
5. Bloor, D.; Chance, R.R. Polydiacetylenes: Synthesis, structure and electronic properties1985.
6. Schmidt, G. M. J., Solid state photochemistry. ed.; Verlag Chemie: Weinheim, 1976.
7. Takami, K.; Mizuno, J.; Akai-Kasaya, M.; Saito, A.; Aono, M.; Kuwahara, Y. J. Phys. Chem. B 2004, 108, 16353.
8. Nalwa, H. S., Miyata, S., ed.; CRC Press: Boca Raton, FL, 1998.
9. Burs, A. R.; Carpick, R.W.; Sasaki, D.Y. Tribology. Letters. 2001, 10, 89.
10. Schott, M. J. Phys. Chem.B 2006, 110, 15864.
11. Carpick, R. W.; Sasaki, D. Y. J. Phys. Condens. Matter 2004, 16, R679.
12. Dobrosavljević, V.; Stratt, R. M. Physical Review B 1987, 35, 2781.
13. Sasaki, D. Y.; Carpick, R. W.; Burs, A. R. J. Colloid and Interface Science 2000, 229, 490.
14. Huo, Q.; Russell, K. C.; Leblanc, R. M. Langmuir 1999, 15, 3972.
15. Tieke, B.; Wegner, G.; Naegele, D.; Ringsdorf, H. Angew. Chem. Int. Ed. Engl. 1976, 15, 764.
16. Lieser, G.; Tieke, B.; Wegner, G. Thin Solid Film 1980, 68, 77.
17. Day, D.; Lando, J. B. Macromolecules 1980, 13, 1478.
18. Mino, N.; Tamura, H.; Ogawa, K. Langmuir 1991, 7, 2336.
19. Cao, G.; Mallouk, T. E. J. Solid State Chem. 1991, 94, 59.
20. Kuriyama, K.; Kikuchi, H.; Kajiyama, T. Langmuir 1996, 12, 2283.
21. Batchelder, D. N.; Evans, S.D.; Freeman, T. L.; Haussing, L.; Ringsdorf, H.; Wolf, H. J. Am. Chem. Soc. 1994, 116, 1050.
22. Bigelow, W. C.; Pickett, D. L.; Zisman, W. A. Collid Interface Sci. 1946, 1, 513.
23. Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc. 1983, 105, 4481.
24. Sagiv, J. J. Am. Chem. Soc. 1980, 102, 92.
25. Fenter, P.; Eberhardt, A.; Eisenberger, P. Science 1994, 266, 1216.
26. Delamarche, E. ; Michel, B. ; Kang, H. ; Gerber, C. Langmuir 1994, 10, 4103.
27. Fenter, P. ; Eisenberger, P. ; Li, J. ; Camillone III, N. ; Bernasek, S. ; Scoles, G.; Ramnanarayanan, T. A.; Liang, K. S. Langmuir 1991, 7, 2013.
28. Dhirani, A.; Hines, M. A.; Fisher, A. J.; Ismail, O.; Guyot-Sionnest, P. ibid 1995, 11, 2609.
29. Keller, H.; Sirnak, P.; Schrepp, W.; Dembowski, J. Thin Solid Film 1994, 244, 799.
30. Itoh, M.; Nishihara, K.; Aramaki, K. J. Electrochem. Soc. 1995, 117, 12528.
31. Schonherr, H.; Ringsdorf, H. ibid 1996, 12, 3891.
32. Biebuyck, H. A.; Whitesides, G. M. Langmuir 1994, 10, 1825.
33. Lee, T. R.; Laibinis, P. E.; Folkers, J. P.; Whitesides, G. M. Pure Appl. Chem. 1991, 63, 821.
34. Folkers, J. P.; Gorman, C. B.; Laibinis, P. E.; Buchholz, S.; Whitesides, G. M.; Nuzzo, R. G. Langmuir 1995, 11, 813.
35. Allara, D. L.; Nuzzo, R.G.; Langmuir 1985, 1, 54.
36. Laibinis, P. E.; Hickinan, J. J.; Wrighton, M. S.; Whitesides, G. M. Science 1989, 245, 845.
37. Tao, Y. T.; Lee, M. T.; Chang, S. C. J. Am. Chem. Soc. 1993, 115, 9547.
38. Ulamn, A. An Introduction to Ultrathin Organic Films:From Langmuir-Blodgett to Self-assembly. ed.; Academic Press: Boston, 1991.
39. Dubois, L. H.; Zegarski, B. R.; Nuzzo, R. G. J. Am. Chem. Soc. 1990, 112, 570.
40. Shand, M. L.; Chance, R. R. Phys. Rev. B 1982, 25, 4431.
41. Allara, D. L.; Nuzzo, R.G. Langmuir 1985, 1, 45.
42. Ogawa, H.; Chihera, T.; Taya, K.; J. Am. Chem. Soc. 1985, 107, 1365.
43. Schlotter, N. E.; Porter, M. D.; Bright, T. B.; Allara, D. L. Chem. Phys. Lett. 1986, 132, 93.
44. Tao, Y. T.; Lee, M. T.; Chang, S. C. J. Am. Chem. Soc. 1993, 115, 4350.
45. Ulamn, A. Chem. Rev. 1996, 96, 1533.
46. Carpick, R. W.; Mayer, T. M.; Sasaki, D. Y.; Burns, A. R. Langmuir 2000, 16, 4639.
47. Du, Q. ; Freysz, E. ; Shen, Y. R. Science 1994, 264, 826.
48. Bain, C. D. J. Chem. Soc. Faraday Trans. 1995, 91, 1281.
49. Folkers, J. P.; Laibinis, P. E.; Whitesides, G. M. Langmuir 1992, 8, 1330.
50. Franklin, B. Phil. Trans. R. Soc. 1774, 64, 445.
51. Pockels, A. Nature 1891, 43, 437.
52. Rayleigh, L. Phil. Mag. 1899, 48, 321.
53. Devaux, H. Smithsonian Institute Ann. Rep. 1913, 261.
54. Hardy, W. B. Proc. R. Soc. A. 1912, 86, 610.
55. Langmuir, I. J. Am. Chem. Soc. 1917, 39, 1848.
56. Blodgett, K. A. J. Am. Chem. Soc. 1935, 57, 1007.
57. Weng, S. Z.; Hu, W. S.; Kuo, C. H.; Tao, Y. T. Appl. Phys. Lett. 2006 , 89, 172103.
58. Sun, Y.; Liu, Y.; Zhu, D. J. Mater. Chem., 2005, 15, 53.
59. Dimitrakopoluos, C. D.; Malenfant, P. R. L. Adv. Mater., 2002, 14, 99.
60. Holstein, T. Ann. Phys. 1959, 8, 325.
61. Silinsh, E. A.; Klimkans, A.; Larsson, S.; Cápek, V. Chem. Phys. 1995, 198, 311.
62. Silinsh, E. A.; Cápek, V. Organic Molecular Crystals. Interaction, Localization and Transport Phenomena, American Institute of Physics Press, New York, 1994.
63. Robertson, G. G.; Aspley, N.; Munn, R. W. Physics Reports 1980, 60, 59.
64. Baessler, H.; Sariciftci, N. S. in Primary Photoexcitations in Conjugated Polymers: Molecular versus Semiconductor Band Model
65. Klauk, H.; Halik, M.; Zschieschang, U.; Schmid, G.; Radlik, W.; Weber, W. J.; J. Appl. Phys. 2002, 92, 5259.
66. (a) Babel, A.; Jenekhe, S. A. J. Phys. Chem. B, 2003, 107, 1749.
(b) Park, S. K.; Kim, Y. H.; Han, J. I.; Moon, D. G.; Kim, W. K.;
Kwak, M. G. Synth. Met., 2003, 139, 377.
67. Payne, M. M.; Parkin, S. R.; Anthony, J. E.; Kuo, C. C.; Jackson, T. N. J. Am. Chem. Soc., 2005, 127, 4986.
68. Chou, W. Y.; Cheng, H. L. Adv. Funct. Mater., 2004, 14, 811.
69. Binnig, G.; Quate, C. F.; Gerber, Ch. Phys. Rev. Lett. 1986, 56, 930.
,
70. (a) CHEMISTRY (THE CHINESE CHEM. SOC.,TAIPEI) March.
2005, 63, No.1.
(b) Stohr, J. Nexafs Spectroscopy (Springer eries in Surface Sciences,
No 25), 1992.
71. Garnier, F.; Yassar, R.; Hajlaoui, G.; Horowitz, F.; Deloffre, F.; Servet, B.; Ries, S.; Alnot, P. J. Am. Chem. Soc. 1993, 115, 8716.
72. Singh, A.; Schnur, J. M. Syn. Comm. 1986, 16, 847.
73. Zeni, G.; Panatieri, R. B.; Lissner, E.; Menezes, P. H.; Braga, A. L.; Stefani, H. A. Org. Lett. 2001, 3, 819.
74. Fiandanese, V.; Bottalico, D.; Marchese, G.; Punzi A. Tetrahedron 2006, 62, 5126.
75. Fiandanese, V.; Bottalico, D.; Marchese, G.; Punzi A. Tetrahedron 2004, 60, 11421.
76. Lewis, L. N.; Colborn, R. E.; Grade, H.; Bryant, G. L.; Sumpter, J. C. A.; Scott, R. A. Organometallics 1995, 14, 2202.
77. Wang, Y.; Hu, S.; Brittain, W. J. Macromolecules 2006, 39, 5675.
78. Matyjaszewski, K.; Miller, P. J.; Shukla, N.; Immaraporn, B.; Gelman, A.; Luokala, B. B.; Siclovan, T. M.; Kickelbick, G.; Vallant, T.; Hoffmann, H.; Pakula, T. Macromolecules 1999, 32, 8716.
79. Snyder, R. G. J. Molecular Spectroscopy 1960, 4, 411.
80. Tao, Y.-T.; Hietpas, G. D.; Allara, D. L. J. Am. Chem. Soc. 1996, 118, 6724.
81. Allara, D. L.; Nuzzo, R. G. Langmuir 1985, 1, 52.
82. Meng, H.; Sun, F.; Goldfinger, M. B.; Jaycox, G. D.; Li, Z.; Marshall, W. J.; Blackman, G. S. J. Am. Chem. Soc. 2005, 127, 2406.
83. Nishide, J.; Oyamada, T.; Akiyama, S.; Sasabe, H.; Adachi, C. Adv. Mater. 2006, 18, 3120.
84. Sakaki, S. Coordination Chem. Rev. 1999, 190-192, 933-960
85. Bloor, D. Polydiacetylenes, 1985