跳到主要內容

簡易檢索 / 詳目顯示

研究生: 凌啟銘
Chi-Ming Ling
論文名稱: 以適應性背景相減法偵測及追蹤移動物體
Motion Object Detection and Tracking Based on Adaptive Background Subtraction
指導教授: 曾定章
Din-Chang Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 92
語文別: 中文
論文頁數: 68
中文關鍵詞: 背景相減追蹤移動物體偵測
外文關鍵詞: background subtraction, track, motion detection
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一個自動監視追蹤系統在保全監視的應用上扮演了一個重要的角色。在本論文的研究中,我們發展了一個即時監視追蹤系統來追蹤移動的物體;例如,人、動物、車輛等。
    我們的即時監視追蹤系統分成三個階段。第一階段是利用背景相減法偵測移動的影像點。在這個方法中,我們建立一個適應性的背景,這個背景能夠解決亮度改變及凌亂物件重複移動的問題。第二階段是移除陰影及雜訊,以減少對系統準確性的影響。第三階段是利用前景物件的色彩及形狀去構建一個前景物件,並且利用前景物件的特徵值比對、追蹤、及預測移動物件的下一個位置。
    在實驗中,我們考慮到幾種不同的天氣;例如,晴天、陰天、多雲、雨天、黃昏、和夜晚,及不同的背景;例如,建築物、樹葉、道路等。從實驗的結果中,我們發現我們的系統都能在不同的天氣和不同的環境中準確的追蹤各種移動物件。


    An automatic surveillance tracking system plays an important role in security applications. In this thesis, we develop a real-time surveillance system for tracking moving objects, like people, animals, vehicles, etc.
    Our system consists of three parts. In the first part, we use the background subtraction technique to detect the moving pixels. In the method, we build an adaptive background to deal with the problems of lighting change, and repetitive motions from clutter. In the second part, we remove the shadow and noise in the images to improve the system accuracy. In the third part, we construct the foreground objects with color and shape information. We also use foreground objects’ characteristic to match, track, and predict the position of the moving object.
    In the experiments, we consider several different weather conditions such as sunny, cloudy, dusky, rainy hours, and night, and different backgrounds like building, tree leaves, roads, and monitor screens. From the experimental results, we find that the proposed approach can accurately detect and track different moving objects in the different weather conditions, and environments.

    摘要 I 誌謝 II 目錄 III 第一章 緒論 一 第二章 相關研究 二 第三章 移動物體的偵測 三 第四章 追蹤 四 第五章 實驗 五 第六章 結論及未來工作 六 附錄 英文版論文 七

    [1] Aggarwal, J. K. and Q. Cai, “Human motion analysis: a review,” Computer Vision and Image Understanding, vol.73, no.3, pp.428-440, 1999.
    [2] Baumberg, A. M. and D. C. Hogg, “An efficient method for contour tracking using active shape models,” in Proc. IEEE Workshop on Motion of Non-Rigid and Articulated Objects, Austin, TX, Nov.11-12, 1994, pp.194-199.
    [3] BenAbdelkader, C., P. Burlina, and L. Davis, “Single camera multiplexing for multi-target tracking,” in Proc. IEEE Int’l Conf. on Image Analysis and Processing, Venice, Italy, Sept.27-29, 1999, pp.1140-1143.
    [4] Bobick, A. and J. Davis, “Real-time recognition of activity using temporal templates,” in Proc. 3rd IEEE Workshop on Applications of Computer Vision, Sarasota, FL, Dec.6-9, 1996, pp.39-42.
    [5] Boult, T.E., R. Micheals, X. Gao, P. Lewis, C. Power, W. Yin, and A. Erkan, “Frame-rate omnidirectional surveillance and tracking of camouflaged and occluded targets,” in Proc. 2nd IEEE Workshop on Visual Surveillance, Fort Collins, CO, Jun.26, 1999, pp.48-55.
    [6] Br?mond, F. and M. Thonnat, “Tracking multiple nonrigid objects in video sequences,” IEEE Trans. on Circuits and System for Video Technology, vol.8, no.5, pp.585-591, Sept. 1998.
    [7] Buxton, H. and S. Gong, “Visual surveillance in a dynamic and uncertain World,” Artificial Intelligence, Special volume on computer vision, vol.78, no.1-2, Oct. 1995.
    [8] C?dras, C. and M. Shah, “Motion-based recognition: a survey,” Image and Vision Computing, vol.13, no.2, pp.129-155, March 1995.
    [9] Cohen, I. and G. Medioni, “Detecting and tracking moving objects for video surveillance,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Fort Collins, CO, Jun.23-25, 1999, pp.325.
    [10] Collins, R. T., A. J. Lipton, and T. Kanade, A System for Video Surveillance and Monitoring, Technical Report, CMU-RI-TR-00-12, Robotics Institute, Carnegie Mellon University, May 2000.
    [11] Collins, R. T., A. J. Lipton, and T. Kanade, “Introduction to the special section on video surveillance,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.22, no.8, pp.745-746, Aug. 2000.
    [12] Cootes, T. F. and C. J. Taylor, “Active shape models – ‘smart snakes’,” in Proc. British Machine Vision Conf., Springer-Verlag, 1992, pp.266-275.
    [13] Cucchiara, R. C. Grana, G. Neri, M. Piccardi, and A. Prati, “The sakbot system for moving object detection and tracking,” in Video-based Surveillance Systems: Computer Vision and Distributed Processing (Part II - Detection and Tracking), Kluwer Academic Publishers, UK, 2001, pp.145-158.
    [14] Cutler, R. and L. Davis, “View-based detection and analysis of periodic motion,” in Proc. 14th IEEE Int’l Conf. on Pattern Recognition, Brisbane, Australia, Aug.16-20, 1998, pp.495-500.
    [15] Davis, J. W. and A. F. Bobick, “The representation and recognition of human movement using temporal templates,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, Jun.17-19, 1997, pp.928-934.
    [16] Elgammal, A., D. Harwood, and L. Davis, “Non-parametric model for background subtraction,” in Proc. 6th European Conf. on Computer Vision, Dublin, Ireland, June/July 2000, pp.751-767.
    [17] Freer, J. A., B. J. Beggs, H. L. Fernandez-Canque, F. Chevrier, and A. Goryashko, “Automatic intruder detection incorporating intelligent scene monitoring with video surveillance,” in Proc. European Conf. on Security and Detection, London, UK, April 28-30, 1997, pp.109-113.
    [18] Gavrila, D. M, “The analysis of human motion and its application for visual surveillance,” in Proc. 2nd IEEE Int’l Workshop on Visual Surveillance, Fort Collins, CO, 1999, pp.3-5.
    [19] Gavrila, D. M, “The visual analysis of human movement: a survey,” Computer Vision and Image Understanding, vol.73, no.1, pp.82-98, Jan. 1999.
    [20] Halevi, G. and D. Weinshal, “Motion of disturbances: detection and tracking of multi-body non-rigid motion,” in Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, Jun.17-19, 1997, pp.897-902.
    [21] Haritaoglu, I., D. Harwood, and L. Davis, “Hydra: multiple people detection and tracking using silhouettes,” in Proc. 2nd IEEE Workshop on Visual Surveillance, Fort Collins, CO, Jun.26, 1999, pp.6-13.
    [22] Haritaoglu, I., D. Harwood, and L. Davis, “W4: real-time surveillance of people and their activities,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.22, no.8, pp. 809-830, Aug. 2000.
    [23] Haritaoglu, I., D. Harwood, and L. Davis, “Active outdoor surveillance,” in Proc. IEEE Int’l Conf. on Image Analysis and Processing, Venice, Italy, Sept.27-29, 1999, pp.1096-1099.
    [24] Heikkil?, J. and O. Silv?n, “A real-time system for monitoring of cyclists and pedestrians,” in Proc. 2nd IEEE Workshop on Visual Surveillance, Fort Collins, CO, Jun.26, 1999, pp.74-81.
    [25] Hongeng, S., F. Br?mond, and R. Nevatia, “Representation and optimal recognition of human activities,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Hilton Head Island, SC, Jun.13-15, 2000, pp.818-825.
    [26] Horprasert, T., D. Harwood, and L. Davis, “A robust background subtraction and shadow detection,” in Proc. ACCV''2000, Taipei, Taiwan, Jan. 2000, pp.983-988.
    [27] Ivanov, Y. A. and A. F. Bobick, “Recognition of multi-agent interaction in video surveillance,” in Proc. 7th IEEE Int’l Conf. on Computer Vision, Kerkyra, Greece, Sept.20-27, 1999, pp.169-176.
    [28] Ivanov, Y. A., C. Stauffer, and A. F. Bobick, “Video surveillance of interactions,” in Proc. 2nd IEEE Workshop on Video Surveillance, Fort Collins, CO, Jun.26, 1999, pp.82-89.
    [29] Kettnaker, V. and M. Brand, “Minimum-entropy models of scene activity,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Fort Collins, CO, Jun.23-25, 1999, pp.286 vol.1.
    [30] Lipton, A.J., Fujiyoshi, H., and Patil, R.S. “Moving target classification and tracking from real-time video,” in Proc. Fourth IEEE Workshop on Applications of Computer Vision, Princeton, NJ, Oct.19-21, 1998, pp.8-14.
    [31] Lu, W. and Y. Tan, “A color histogram based people tracking system,” in Proc. IEEE Int’l Sym. on Circuits and Systems, Sydney, Australia, May 6-9, 2001, pp.137-140.
    [32] Mikic, I., P. Cosman, G. Kougut, and M.M. Trivedi, “Moving shadow and object detection in traffic scenes,” in Proc. 15th Int’l Conf’ on Pattern Recognition, Barcelona, Spain, Sept.3-7, 2000, pp.321-324.
    [33] Oliver, N. M., B. Rosario, and A. P. Pentland, “A bayesian computer vision system for modeling human interactions,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.22, no.8, pp.831-843, Aug. 2000.
    [34] Olson, T. and F. Brill, “Moving Object Detection and Event Recognition algorithm for Smart Cameras,” in Proc. DARPA Image Understanding Workshop, New Orleans, May 1997, pp.159-175.
    [35] Regazzoni, C., V. Ramesh, G. L. Foresti, “Special issue on video communications, processing, and understanding for third generation surveillance systems,” Proceeding of the IEEE, vol.89, no.10, Oct. 2001.
    [36] Rehg, J. M., M. Loughlin, K. Waters, “Vision for a smart kiosk,” IEEE Conf. on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, Jun.17-19, 1997, pp.690-696.
    [37] Remagnino, P., A. Baumberg, T. Grove, D. Hogg, T. Tan, A. Worrall, K. Baker, “An integrated traffic and pedestrian model-based vision system,” in Proc. BMVC ''97, Univ. of Essex, vol.2, 1997, pp.380-398.
    [38] Rigoll, G., B. Winterstein, S. M?ller, “Robust person tracking in real scenarios with non-stationary background using a statistical computer vision approach,” in Proc. 2nd IEEE Workshop on Visual Surveillance, Fort Collins, CO, Jun.26, 1999, pp.41-47.
    [39] Sechidis, L. A, P. Patias, V. Tsioukas, “Low-level tracking of multiple objects,” in Proc. Workshop on Non-rigid Motion, Nov.1994, pp.77-82.
    [40] Stauffer, C. and W. E. L. Grimson, “Adaptive background mixture models for real-time tracking,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Fort Collins, CO, Jun.23-25, 1999, pp.252 vol.2.
    [41] Tou, J.T. and R.C. Gonazalez, Pattern Recognition Principles, Addison-Wesley, Canada, 1974, Ch.3, pp.90-93.
    [42] Wada, T. and T. Matsuyama, “Appearance sphere: background model for pan-tilt-zoom camera,” in Proc. 13th Int’l Conf. on Pattern Recognition, Vienna, Austria, Aug.25-29, 1996, pp.718-722.
    [43] Welch, G. and G. Bishop, An Introduction to The Kalman Filter, Technical Report, Department of Computer Science, University of North Carolina at Chapel Hill, 1995.
    [44] Wren, C. R., A. Azarbayejani, T. Darrell, and A.P. Pentland, “Pfinder: real-time tracking of the human body,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.19, no.7, pp.780-785, July 1997.

    QR CODE
    :::