跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李文馨
Wen-hsin Li
論文名稱: Papilio blumei 蝴蝶的顏色與構造
The colouration and structure of
指導教授: 李正中
Cheng-chung Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 照明與顯示科技研究所
Graduate Institute of Lighting and Display Science
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 84
中文關鍵詞: Papilio blumei蝴蝶有限時域差分法幾丁質偏極轉化感應耦合電漿離子蝕刻技術鱗片
外文關鍵詞: Papilio blumei butterfly, FDTD, chitin, polarization rotation, ICP etching, scales
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是探討自然界中的Papilio blumei(P. blumei)蝴蝶,因為其翅膀上及尾翼部分具有綠色及青色的鱗片,而鱗片上的顏色主要是由幾丁質及空氣共同組成特殊的凹洞多層膜孔洞結構,而此凹洞結構具有偏極轉化的光學特性,本文利用有限時域差分法(Finite-Difference Time-Domain, FDTD)模擬蝴蝶鱗片結構及利用聚苯乙烯小球(polystyrene spheres)、感應耦合電漿離子蝕刻技術(Inductively coupled plasma etching)及雙電子槍蒸鍍系統等方法仿造其蝴蝶鱗片結構。
      首先,多層膜結構由幾丁質及幾丁質/空氣層幾丁質所組成,而兩種顏色的層數、幾丁層及空氣層厚度以及有幾丁質/空氣層比例皆不同,故使用有限時域差分法模擬不同參數下的蝴蝶多層膜孔洞結構,探討其顏色趨勢,並利用等效介質理論模擬其凹洞結構,探討其凹洞結構中央與四周的顏色分布。
      在製程過程中,利用聚苯乙烯小球、感應耦合電漿離子蝕刻技術製作鱗片凹洞結構,再利用雙電子槍蒸鍍系統鍍製Ta2O5、SiO2兩種材料仿造其多層膜結構等,以達到仿造其蝴蝶鱗片凹洞結構及其偏極轉化(polarization rotation)的光學特性。


    The scales on wings of Papilio blumei (P. blumei) butterflies have been investigated and discussed in this article. There are two scales with green stripe across its forewings and hindwings and a blue color from the tail region of its hindwings. The scales are constituted of chitin-air concavities structures. The concavities structure makes polarization rotation and color mixing. We utilized Finite-Difference Time-Domain, FDTD, method to simulate the structures of scales and fabricated the concavities structures with polystyrene spheres, inductively coupled plasma etching (ICP etching) and electron beam gun evaporation.
      The parameters of layers, chitin depth, chitin length, air depth and length differ from the two scales determinate the color in the green and cyan regions. Utilizing FDTD method to simulate the different parameters, we have found a color changing trend from the spectra. Besides, we also simulated the concavities structures with effective medium approximation (EMA) to investigate the color on the center and side regions.
      We have used polystyrene spheres, inductively coupled plasma etching to mimic the concavities structure and Ta2O5/SiO2 multilayers by electron beam gun evaporation to fabricate the structure and analyze the polarization rotation and color appearance.

    摘要 I ABSTRACT II 致謝 III 目錄 V 圖目錄 VII 表目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 蝴蝶介紹 2 1-3 文獻回顧 6 1-4 研究目的 13 1-5 論文架構 13 第二章 理論 15 2-1 光子晶體(Photonic Crystal) 15 2-2 色度座標 17 2-3 有限時域差分法 (Finite-Difference Time-Domain Method) 21 2-4 等效介質理論 25 2-5 多層膜干涉理論 27 第三章 儀器介紹 29 3-1 光學顯微鏡 29 3-2 掃描式電子顯微鏡 30 3-3 積分球光譜儀 32 3-4 結構製程設備 33 第四章 量測結果與分析 35 4-1 光學顯微鏡圖 35 4-2 SEM圖 37 4-3 反射率光譜圖 40 4-4 CIE1931 xy色度圖 42 第五章 模擬結果與分析 44 5-1 P. blumei蝴蝶綠色及青色區域之孔洞多層膜結構 44 5-2 P. blumei蝴蝶綠色及青色區域之凹洞多層膜結構 49 第六章 蝴蝶仿生結構製程 53 6-1 實驗流程 53 6-2 結果與分析 60 第七章 結論 64 參考文獻 65

    [1] Pete Vukusic and J. Roy Sambles, “Photonic structures in biology," Nature, 424(6992), 852-855 (2003).
    [2] 維基百科。http://zh.wikipedia.org/zh-tw/%E8%9D%B4%E8%9D%B6
    [3] Tada H, Mann S E, Miaoulis I N, et al, "Effects of a butterfly scale microstructure on the iridescent color observed at different angles," Opt Express, 5(4), 87-92 (1995).
    [4] Mathias Kolle, Pedro M. Salgard-Cunha, Maik R. J. Scherer, Fumin Huang, Pete Vukusic, Sumeet Mahajan, Jeremy J. Baumberg and Ullrich Steiner, "Mimicking the colourful wing scale structure of the Papilio blumei butterfly," Nature Nanotechnoloby, 5(7), 511-515 (2010).
    [5] Kertész K, Bálint Z, Vértesy Z, et al., "Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus," Phys Rev E, 74(2), 021922 (2006).
    [6] Yagi Nobumasa, "Note of electron microscope research on pterin pigment in the scales of pierid butterflies," Annotationes zoologicae Japonenses, 27,113-114 (1954).
    [7] Descimon, H., "Biology of pigmentation in Pieridae butterflies," In Chemistry and biology of pteridines, 805-840(1975).
    [8] Nathan I Morehouse, Peter Vukusic and Ron Rutowski, "Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies," Proc Roy Soc B, 274(1908), 359-366 (2007).
    [9] B. Wijnen, H.L. Leertouwer, D.G. Stavenga, "Colors and pterin pigmentation of pierid butterfly wings," J Insect Physiol, 53(12), 1206-1217 (2007).
    [10] Serge Bethier, "Iridescences, les Couleurs Physiques des Insectes,", Paris, 2003.
    [11] Shuichi Kinoshita, "Structural Colors in the Realm of Nature,"(2008).
    [12] Kinoshita, S., Yoshioka, S. and Miyazaki, J., "Physics of structural colors," Rep. Prog. Phys., 71(7), 076401 (2008).
    [13] Ghiradella, H., "Structure of butterfly scales: patterning in an insect cuticle," Microsc. Res. Tech., 27(5), 429-438 (1994).
    [14] Vukusic, P., Sambles, J.R., Lawrence, C.R., Wootton, R.J., "Quantified interference and diffraction in single Morpho butterfly scales," Proceedings of the Royal Society B, 266(1427), 1403-1411 (1994).
    [15] Yoshioka, S., Kinoshita, S., "Single-scale spectroscopy of structurally
    colored butterflies: measurements of quantified reflectance and transmittance," Journal of the Optical Society of America A, 23(1), 134-141 (2006).
    [16] 秦佑華, 劉鋒, 殷海瑋, “碧鳳蝶翅膀上的一維光子結構,” 科學通報, 52(18), 2101-2106 (2007).
    [17] Parker A R., "The diversity and implications of animal structural colours," J Exp Bio, 201(16), 2343-2347 (1998).
    [18] Ghiradella H, Aneshansley D, Eisner T, et al., "Ultra-violet reflection of a male butterfly: interference colour caused by thin layer elabo-ration of wing scales," Science, 178, 1214-1217 (1972).
    [19] Boris G, Gerard T, Stefan E., "Morpho butterflies wings color modeled with lamellar grating theory," Opt Express, 9(11), 567-578 (2001).
    [20] Kinoshita S, Yoshioka S, Kawagoe K., "Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregu-larity in an iridescent scale," Proc R Soc Lond B, 269(1499), 1417-1421 (2002).
    [21] Vukusic P, Sambles J R, Lawrence C R, et al., "Limited-view iridescence in the butterfly Ancyluris meliboeus," Proc R Soc Lond B, 269(1486), 7-14 (2002).
    [22] Daniel J B, Mike E L., "Confined blue iridescence by a diffracting microstructure: an optical investigation of the Cynandra Opis butter-fly," App Opt, 25(38), 5282-5289 (1999).
    [23] Vukusic P, Sambles J R, Lawrence C R, et al., "Quantified interference and diffraction in single Morpho butterfly scales," Proc R Soc Lond B, 266(1427), 1403-1411 (1999).
    [24] Vukusic, P., Sambles, R. J. & Lawrence, C. R., "Colour mixing in wing scales of a butterfly," Nature, 404, 457 (2000).
    [25] Peter Vukusic, Roy Sambles, Christopher Lawrence, and Gavin Wakely, "Sculpted-multilayer optical effects in two speciesof Papilio butterfly," APPLIED OPTICS, 40(7), 1116-1125 (2001)
    [26] P. Vukusic, J. R. Sambles and C. R. Lawrence, "Structurally assisted blackness in butterfly scales," Proc. R. Soc. Lond. B, 271, S237-S239(2004)
    [27] Davy P. Gaillot, Olivier Deparis, Victoria Welch, Brent K. Wagner, Jean Pol Vigneron, and Christopher J. Summers, "Composite organic-inorganic butterfly scales: Production of photonic structures with atomic layer deposition," PHYSICAL REVIEWE, 78(3), 031922-1-6 (2008).
    [28]Zhang W, Zhang D, Fan T, Ding J, Guo Q and Ogawa H, "Morphosynthesis of hierarchical ZnO replica using butterfly wing scales as templates," Microporous Mesoporous Mater.,92, 227–33(2006)

    [29]Huang J, Wang X and Wang Z L, "Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett., 6, 2325–32(2006)
    [30] Pulsifer D P, Lakhtakia A, Mart´ın-Palma R J and Pantano C G, "Engineered biomimicry: polymeric replication ofsurface features found on insects," Proc. SPIE, 7975, 79750O(2011)
    [31] Pulsifer D P, Lakhtakia A, Mart´ın-Palma R J and Pantano C G, "Mass fabrication technique for polymeric replicas ofarrays of insect corneas," Bioinsp. Biomim., 5, 036001-9(2010)
    [32] 欒丕綱、陳啟昌,《光子晶體-從蝴蝶翅膀到奈米光子學》,五南圖書出版社,臺北市,第二版,2010。
    [33] T. Mori, K. Obata, and T. Mizutani, "Electroluminescence of organic light emitting diodes with alternately deposited dye-doped aluminium quinoline and diamine derivative," J. Phys. D: Appl. Phy., 1998, 32(11), 1198.
    [34] 湯順清, ”色度學”, 北京理工大學出版社, 1990.
    [35] 荊其誠, ”色度學”, 北京科學出版社, 1991.
    [36] Wyszecki, G., Stiles, W. S., “Color Science,” John Wiley & Sons, (1982).
    [37] YeeK.S, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans.Antennas Propagat., 14(3), 302-307 (1966).
    [38] F. Zheng, Z. Chen, and J. Zhang, “A finite-difference time-domain method without the Courant stability conditions,” IEEE Microwave Guided Wave Lett. 9 (1999) 441.
    [39] D. E. Aspnes, "Local-field effects and effective-medium theory:A microscopic perspective," American Journal of Physics, 50, 704-709 (1982).
    [40] Shuichi Kinoshita and Shinya Yoshioka, "Structural Colors in Nature: The Role of Regularity and Irregularity in the Structure," ChemPhysChem, 6(8), 1442-1459 (2005).
    [41] Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999).

    QR CODE
    :::