| 研究生: |
陳宇晟 Yu-Cheng Chen |
|---|---|
| 論文名稱: |
基於 O-RAN 之工業物聯網系統設計與實現 The Design and Implementation of O-RAN- based Industrial Internet of Things System |
| 指導教授: |
許獻聰
Shiann-Tsong Sheu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 開放性無線接入網路 、工業物聯網 、低功耗藍牙 、無線智能公用網絡 、第五代行動通訊 |
| 外文關鍵詞: | O-RAN, IIoT, BLE, Wi-SUN, NR |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著物聯網 (IoT) 之飛快發展,IoT 裝置數量於 2020 年已達 300 億,估計 2025 年 IoT 裝 置數量將超越 750 億,其中又以工業物聯網 (IIoT) 之感測設備佔大宗。此外工廠內感測設備 可根據其應用與傳輸品質要求選擇適當之傳輸協議作為媒介,例如行動網路、低功耗藍牙 (BLE)、無線智慧公用網路 (Wi-SUN)、Wi-Fi 等進行資料交換。然而,這些通訊協定相互獨 立,若同時存在於工廠環境中將造成感測設備管理與維護困難。因此勢必需要一套相容於所 有傳輸機制之管理系統,透過開放介面監控、管理與更新感測裝置。
然而,湊巧近年開放性無線存取網路 (Open Radio Access Network, O-RAN) 之盛行,除 了其本身提倡之開放性介面、結合 AI/ML 之架構以及其高部署彈性之優點外,O-RAN 亦提 供了服務管理與編排 (Service Management and Orchestration, SMO) 之網路功能供網管對網路 設施進行監控與管理,使多家供應商之設備得以於 O-RAN 系統架構下融合。基於上述之優 點,本論文將設計一套基於開放性無線存取網路之工業物聯網系統 (簡稱 O-IIoT),為工廠內 不同之異質網路感測器提供優化網路管理之選項,降低工廠業者維運與管理成本。
為驗證本研究提出之 O-IIoT 系統之可行性,本研究將設計一套同時符合 Wi-SUN、BLE 與 5G New Radio (NR) 無線網路協定運作之管理系統。並以 Wi-SUN 為例之實作成果驗證其 管理介面能夠隨時因應當下狀況調整任一感測裝置之輪詢間隔 (Polling Interval)、回報間隔 (Reporting Interval) 與異常情形做出反應。
With the rapid development of the Internet of Things (IoT), the number of IoT devices has reached 30 billion in 2020, and it is estimated that the number of IoT devices will exceed 75 billion in 2025. Among them, the sensor equipment of the Industrial Internet of Things (IIoT) accounts for the majority. In addition, the sensor equipment in the factory can choose an appropriate transmission protocol as a medium according to its application and transmission quality requirements, such as mobile network, Bluetooth Low Energy (BLE), Wireless Smart Utility Network (Wi-SUN), Wi-Fi, etc. However, these communication solutions are quite different which will have difficulty in management and maintenance of sensor equipment. Therefore, it is necessary to have a management system with open interface to support all kinds of transmission solutions used in IIoT network.
Fortunately, in recent years, open radio access network (O-RAN) has become prevalent. In addition to the advantage of open interface, AI/ML combined architecture and high deployment flexibility, O-RAN also provides Service Management and Orchestration (SMO) function for network administrator to monitor and manage network functions, so that the equipment from different vendors can be easily integrated. Based on such benefit brought from open interface, this thesis will propose an O-RAN-based industrial internet of things system (named as O-IIoT), which aims to provide the network framework for heterogeneous sensors deployed in factory, which may reduce the maintenance and operation cost.
In order to verify the feasibility of O-IIoT system, this study takes Wi-SUN as an experimental example to evaluate the ability of the proposed network framework via dynamically adjusting the parameters of Polling Interval and Reporting Interval stored in a sensor device also react to unexpected situations.
[1] Bluetooth SIG “Bluetooth Core Specification,” Dec 31, 2019
[2] IEEE “802.15.4-2020 – IEEE Standard for Low-Rate Wireless Network” July 23, 2020
[3] Eugene Fodor, “Zigbee vs. Bluetooth: Choosing the right Protocol for Your IoT Application,”
March 05, 2021. Retrieved from https://www.digi.com/blog/post/zigbee-vs-bluetooth-choosing-
the-right-protocol
[4] F. Qualcomm (2020).Ultra-Reliable Low Latency 5G for Industrial (February,2021) Automation
Retrieved from https://www.qualcomm.com/media/documents/files/read-the-white-paper-by-
heavy-reading.pdf
[5] Y. Seol, D.Hyeon, J.Min, M.Kim, J.Paek, “Timely Survey of Time-Sensitive Networking: Past
and Future Directions” 2021 IEEE Access, Oct 2021
[6] Evgeny Khorov; Ilya Levitsky; Ian F. Akyildiz, “Current Status and Directions of IEEE
802.11be, the Future Wi-Fi 7” 2020 IEEE Access, May 08 2020
[7] O-RAN Architecture Description, O-RAN TS WG1 O-RAN-Architecture-Description-v03.00
[8] AI/ML Workflow Description and requirements, O-RAN WG2 AIML-v01.02
[9] O-RAN Operations and Maintenance Interface Specification, O-RAN WG1 O1-Interface.0-
v04.00
[10] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network configuration protocol
(NETCONF),” Internet Requests for Comments, RFC Editor, RFC 6241, June 2011. [Online].
Available: http://www.rfc- editor.org/rfc/rfc6241.txt
[11] M. Polese, L. Bonati, S. D'Oro, S. Basagni, T. Melodia, "Understanding O-RAN: Architecture,
Interfaces, Algorithms, Security, and Research Challenges", arXiv:2202.01032 [cs.NI],
February 2022.
[12] 5G-FAPI PHY API Specification, SCF222 Document 222.10.03
[13] M. Bjorklund, “YANG - A Data Modeling Language for the Network Configuration Protocol
41
(NETCONF),” Internet Requests for Comments, RFC Editor, RFC 6020, October 2010. [Online].
Available: https://datatracker.ietf.org/doc/html/rfc6020
[14] Bluetooth Low Energy Channels – Microchip Developer home page.
[15] Kumaran Vijayasankar, and Roberto Sandre, “Frequency hopping for long-range IoT networks,”
Texas Instruments, July 2016
[16] Shadi Al-Sarawi; Mohammed Anbar; Kamal Alieyan; Mahmood Alzubaidi, “Internet of Things
(IoT) communication protocols: Review” 2017 ICIT, Oct 23 2017
[17] Taibur Rahman; Swarnendu Kumar Chakraborty, “Provisioning Technical Interoperability
within ZigBee and BLE in IoT Environment” 2018 IEMENTech, Sep 17 2018
[18] Viacheslav Kulik; Ruslan Kirichek, “The Heterogeneous Gateways in the Industrial Internet of
Things” 2018 ICUMT, Feb 04 2019
[19] Ying Duan; Wenfeng Li; Ye Zhong; Xiuwen Fu, “A Multi-network Control Framework Based
on Industrial Internet of Things” 2016 ICNSC, May 26 2016
[20] 3GPP, “NG-RAN; Architecture description,” 3rd Generation Partnership Project (3GPP),
Technical Specification (TS) 38.401, 09 2018, version 15.3.0. [Online]. Available:
http://www.3gpp.org/DynaReport/38401.htm
[21] 3GPP, “Study on new radio access technology: Radio access architecture and interfaces,” 3rd
Generation Partnership Project (3GPP), Technical Report (TR) 38.801, 03 2017, version 14.0.0.
[22] 3GPP, “5G; NG-RAN; F1 Application Protocol (F1AP)” 3rd Generation Partnership Project
(3GPP), Technical Report (TR) 38.473, 01 2020, version 15.8.0
[23] 3GPP, “5G; NR; Medium Access Control (MAC) protocol specification” 3rd Generation
Partnership Project (3GPP), Technical Specification (TS) 38.321, 09 2018, version 15.3.0.
[24] 3GPP, “General Packet Radio System (GPRS) Tunnelling Protocol User Plane (GTPv1-U),” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 29.281, 06 2022, version
17.3.0
[25] O-RAN Software Community E-Release home page.
42
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=41452927
[26] O-RAN O-DU High E-Release
home page. https://gerrit.o-ran-sc.org/r/admin/repos/o-du/l2
[27] Sensor and Collector- TI 15.4-Stack Project home page.
https://dev.ti.com/tirex/explore/node?devtools=LAUNCHXLCC1312R1&node=ACSAtZnxsY
4uCHgVnnjt2g__BSEc4rl__LATEST
[28] O-IIoT project gitlab home page.
https://mwnlgit.ce.ncu.edu.tw/cyc1206/OIIoT
[29] Li Ma; Zhaoyuan Xiu, “Industrial Internet of Things Multi-Protocol Convergence Gateway Research and Experiment” 2020 IEEE, Sep 09 2020