| 研究生: |
黃其超 Chi-Chau Huang |
|---|---|
| 論文名稱: |
在不同氣氛下Al-XSi(X=0,1.2wt%)合金熱合氧化膜的成長機制 Thermally-Formed oxide on the Al-XSi (X=0 and 1.2mass%) Alloy in Different Gases |
| 指導教授: |
施登士
Teng-Shih Shih |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 熱成長氧化膜 、脫水作用 、微通道 、鋁矽合金 |
| 外文關鍵詞: | thermal-formed oxide, dehydration, Al-Si alloy |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討鋁矽合金熱成長氧化膜的成長機制分析,使用純鋁(99.999%)鈀材及矽含量為1.2wt%的鋁矽合金,使用乾磨方式研磨試片表面至P2000號砂紙,在空氣與氮氣氣氛下,將純鋁試片置於610℃持溫1~25小時以及鋁-1.2矽置於570℃持溫1~25小時以生成熱合氧化膜。使用SEM、ESCA、EPMA、TGA及XRD對氧化膜作性質分析。
實驗結果發現,純鋁熱合氧化膜中有微通道的存在,結構緻密,整個氧化膜相轉換大致依循著水合氧化鋁脫水作用形成氧化鋁的機制生長,並會從基材釋放出氫氣。610℃持溫25小時的氧化膜表層已轉化為θ-氧化鋁,靠近基材的則為γ-氧化鋁。鋁-1.2矽合金熱合氧化膜結構鬆散組成複雜,較純鋁氧化膜厚,矽隨機分散在氧化膜中並形成團塊,且因為矽的幫助使得鋁-1.2矽氧化膜中富含鋁。另外在氮氣氣氛下,觀察到氧化膜較空氣氣氛生長速率快使得膜厚較厚。
Pure aluminum and Al-1.2mass%Si alloy were heated at a specific temperature for a giving time after cube samples had been polished by abrasive papers. The amorphous layer formed on the sample surface then transformed to be crystallized oxide film during heating and/or holding. This study discussed the thermal-formed oxide film progressively developed on the surface of the cube samples. For pure aluminum, gibbsite forms initially then γ-alumina forms due to the gibbsite dehydration and the gamma-alumina grows in thickness via the diffusion of oxygen inward to the interface of oxide film and substrate. The thermally-formed oxide film is comprised of complex oxides of γ-alumina, α-alumina, diaspore and gibbsite. The oxide on Al-1.2mass%Si is loosed in structure and composed mainly of γ-alumina, diaspore and gibbsite along with metallic silicon and/or aluminum. In nitrogen gas, the thermally-formed oxide got more thickness.
This study used TGA analysis to describe the progressive development of the thermally-formed oxide on the pure Al and the Al-1.2mass%Si alloy respectively. The oxide film on the polished surface was observed by an optical microscope and a scanning electron microscope. Auger electron spectroscopy was used to analyze the composition of the surface oxide. An X-ray powder diffractometer equipped with glancing incident angle (G.I.A.) was utilized to test the constituents of thin oxide film on the heated samples.
[1]R.A. Robie, B.S. Hemingway, J.R. Fisher, Thermodynamics Properties of Minerals and Related Substances at 298.15K and 1 Bar (105 Pascal) Pressure and at Higher Temperature, U.S. Government Printing Office, Washington, 1978, pp. 137-248.
[2]I.J. Polmear, Light Alloys:Metallurgy of the Light Metals 3rd ed., John Wiley & Sons, New York, 1995.
[3]C.R. Loper, Jr., “Fluidity of Aluminum-Silicon Casting Alloys”, AFS Transactions, 100 (1992), pp. 533-538.
[4]P.S. Santos, H.S. Santos, S.P. Toledo, “Standard Transition Aluminas. Electron Microscopy Studies”, Materials Research, 3 (2000) , pp. 104-114.
[5]S.W. Whangbo, Y.K. Choi, W.S. Koh, K.B. Chung, H.K. Jang, C.N. Whang, “Effect of Silicon Surface States on the Properties of Epitaxial Al2O3 Films”, Thin Solid Films, 398-399 (2001), pp. 480-484.
[6]L.D. Hart, Esther Lense, Alumina Chemicals:Science and Technology Handbook, American Ceramic Society, Westerville, Ohio, 1990, pp. 32, 50.
[7]William D. Callister, Jr., Materials Science and Engineering:An Introduction, 4th ed, John Wiley & Sons, New York, 1997, pp. 38.
[8]M.R. Alexander, G.E. Thompson, G.Beamson, “Characterization of the Oxide/Hydroxide Surface of Aluminum Using X-ray Photoelectron Spectroscopy: A Procedure for Curve Fitting the O 1s Core Level”, Surface and Interface Analysis, 29 (2000), pp. 468-477.
[9]林敬二、楊美惠、楊寶旺、廖德章、薛敬和,英.中.日 化學大辭典,高立圖書有限公司,台北,2000,pp. 70、380、927、1364.
[10]W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics 2nd ed, Wiley, New York, 1976, pp. 64, 65.
[11]I. Levin, D. Brandon, “Metastable Alumina Polymorphs:Crystal Structures and Transition Sequences”, Journal of the American Ceramic Society, 81(1998), pp. 1995-2012.
[12]宋啟瑞,在鋁上成長堰層陽極氧化膜的研究,國立交通大學材料科學與工程研究所碩士班論文,新竹,民國九二年七月
[13]Per Kofstad, High Temperature Oxidation of Metals, John Wiley & Sons, New York, 1966.
[14]徐東明,熱成長氧化膜防治S44660不銹鋼氫脆之研究,國立中興大學材料工程學研究所碩士班論文,台中,民國八八年七月
[15]P.E. Doherty, R.S. Davis, “Direct Observation of the Oxidation of Aluminum Single-Crystal Surfaces”, Journal of Applied Physics, 34 (1963), pp. 619-628.
[16]P.E. Doherty, R.S. Davis, “The Formation of Surface Pits by the Condensation of Vacancies”, Acta Metallurgica, 7(1959), pp. 118-123.
[17]L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar, E.J. Mittemeijer, “Composition and Chemical State of the Ions of Aluminium-Oxide Films Formed by Thermal Oxidation of Aluminum”, Surface Science, 506(2002), pp. 313-332.
[18]P.C. Snijders, L.P.H. Jeurgens, W.G. Sloof, “Structure of Thin Aluminium-Oxide Films Determined From Valence Band Spectra Measured Using XPS”, Surface Science, 496(2002), pp. 97-109.
[19]O. Salas, H. Ni, V. Jayaram, K.C. Vlach, C.G. Levi, R. Mehrabian, “Nucleation and Growth of Al2O3/metal Composites by Oxidation of Aluminum Alloys”, Journal of Materials Research, 6(1991), pp. 1964-1981.
[20]S.W. Whangbo, Y.K. Choi, H.K. Jang, Y.D. Chung, I.W. Lyo, C.N. Wang, “Effect of Oxidized Al Prelayer for the Growth of Polycrystalline Al2O3 Films on Si Using Ionized Beam Deposition”, Thin Solid Films, 388(2001), pp. 290-294.
[21]Lennart Backerud, Guocai Chai, Jarmo Tamminen, Solidification Characteristics of Aluminium Alloys Vol. 2:Foundry alloys, The American Foundrymen''s Society, Inc. , (1990).
[22]J.E. Gruzleski, B.M. Closset, The Treatment of Liquid Aluminum-Silicon Alloys, The American Foundrymen’s Society, Inc. , (1990).
[23]A.J. Criado, J.A. Martinez and R. Calabres, Growth of Eutectic Silicon From Primary Silicon Crystals in Aluminium-Silicon Alloys, Scripta Materialia, 36(1) (1997), pp. 47-54.
[24]S. Wu, H. Nakae, Nucleation Effect of Alumina in Al-Si/Al2O3 Composites, Journal of Materials Science Letters, 18 (1999), pp. 321-323.
[25]陳英昌,鋁合金中氧化膜的生長與分解,國立中央大學機械工程研究所碩士班論文,桃園,民國九二年七月
[26]劉俊伯,鋁、鎂合金熱成長氧化膜的微結構與熱反應,國立中央大學機械工程研究所碩士班論文,桃園,民國九四年七月
[27]C. Anandan, “X-ray Photoelectron Spectroscopic Study of Room-Temperature Evolution of Oxide-Covered Hydrogenated Amorphous Silicon卅Aluminium Interface”, Applied Surface Science, 89 (1995), pp. 57-61.
[28]J.F. Moulder, W.F. Stickle, P.E. Sobal, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation Physical Electronics Division, (1992), pp. 213-239.
[29]International Centre for Diffraction Data, PCPDFWIN – Powder Diffraction File(粉末繞射光碟資料庫), International Centre for Diffraction Data, (2001).
[30]L. Yang, D. Zhu, C. Xu, J. Zhang, Metall. Trans., A, Phys. Metall. Mater.Sci. , 27 (1996), pp. 2094–2099.
[31]B.C. Lippens and J.J. Steggerda, Physic and Chemical Aspects of Adsorbents and Catalysts, B. G. Linsen, Academic press, London-New York, 1970, pp. 171-211.
[32]S.J. Wilson, “The Dehydration of Boehmite, r-AlOOH, to r-Al2O3”, Journal of Solid State Chemistry, Vol 30(1979), pp. 247-255.